source: GTP/trunk/Lib/Vis/Preprocessing/src/VspBspTree.h @ 1545

Revision 1545, 25.5 KB checked in by mattausch, 18 years ago (diff)
RevLine 
[463]1#ifndef _VspBspTree_H__
2#define _VspBspTree_H__
3
4#include "Mesh.h"
5#include "Containers.h"
6#include "Polygon3.h"
7#include <stack>
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "ViewCellBsp.h"
12
[955]13
14
[863]15namespace GtpVisibilityPreprocessor {
16
[882]17class ViewCellLeaf;
[469]18//class BspViewCell;
[463]19class Plane3;
20class VspBspTree; 
21class BspInterior;
22class BspNode;
23class AxisAlignedBox3;
24class Ray;
25class ViewCellsStatistics;
[478]26class ViewCellsManager;
[580]27class MergeCandidate;
[532]28class Beam;
[590]29class ViewCellsTree;
[1004]30//class Environment;
[532]31
[463]32/**
[445]33        This is a view space partitioning specialised BSPtree. 
34        There are no polygon splits, but we split the sample rays.
35        The candidates for the next split plane are evaluated only
36        by checking the sampled visibility information.
[463]37        The polygons are employed merely as candidates for the next split planes.
38*/
39class VspBspTree
40{
[508]41        friend class ViewCellsParseHandlers;
[520]42        friend class VspBspViewCellsManager;
[463]43public:
44       
45        /** Additional data which is passed down the BSP tree during traversal.
46        */
[663]47        class VspBspTraversalData
[463]48        { 
[663]49        public:
[463]50                /// the current node
51                BspNode *mNode;
52                /// polygonal data for splitting
53                PolygonContainer *mPolygons;
54                /// current depth
55                int mDepth;
56                /// rays piercing this node
57                RayInfoContainer *mRays;
[547]58                /// the probability that this node contains view point
59                float mProbability;
[727]60                /// geometry of node as induced by planes
[463]61                BspNodeGeometry *mGeometry;
62                /// pvs size
63                int mPvs;
[472]64                /// how often this branch has missed the max-cost ratio
65                int mMaxCostMisses;
[727]66                /// if this node is a kd-node (i.e., boundaries are axis aligned
[562]67                bool mIsKdNode;
[727]68                // current axis
[663]69                int mAxis;
[727]70                // current priority
[663]71                float mPriority;
[654]72
[664]73               
[463]74                /** Returns average ray contribution.
75                */
76                float GetAvgRayContribution() const
77                {
78                        return (float)mPvs / ((float)mRays->size() + Limits::Small);
79                }
80
81
82                VspBspTraversalData():
83                mNode(NULL),
84                mPolygons(NULL),
85                mDepth(0),
86                mRays(NULL),
87                mPvs(0),
[547]88                mProbability(0.0),
[472]89                mGeometry(NULL),
[562]90                mMaxCostMisses(0),
[664]91                mIsKdNode(false),
[727]92                mPriority(0),
93                mAxis(0)
[463]94                {}
95               
96                VspBspTraversalData(BspNode *node,
[473]97                                                        PolygonContainer *polys,
98                                                        const int depth,
99                                                        RayInfoContainer *rays,
[547]100                                                        const int pvs,
101                                                        const float p,
[473]102                                                        BspNodeGeometry *geom):
[463]103                mNode(node),
104                mPolygons(polys),
105                mDepth(depth),
106                mRays(rays),
107                mPvs(pvs),
[547]108                mProbability(p),
[472]109                mGeometry(geom),
[562]110                mMaxCostMisses(0),
[664]111                mIsKdNode(false),
[727]112                mPriority(0),
113                mAxis(0)
[463]114                {}
115
116                VspBspTraversalData(PolygonContainer *polys,
117                                                        const int depth,
118                                                        RayInfoContainer *rays,
119                                                        BspNodeGeometry *geom):
120                mNode(NULL),
121                mPolygons(polys),
122                mDepth(depth),
123                mRays(rays),
124                mPvs(0),
[547]125                mProbability(0),
[472]126                mGeometry(geom),
[562]127                mMaxCostMisses(0),
[727]128                mIsKdNode(false),
129                mAxis(0)
[463]130                {}
[472]131
[1016]132                /** Returns priority of the traversal data.
[474]133                */
134                float GetCost() const
[472]135                {
[678]136                        //cout << mPriority << endl;
[664]137                        return mPriority;
[472]138                }
[474]139
[478]140                // deletes contents and sets them to NULL
141                void Clear()
142                {
143                        DEL_PTR(mPolygons);
144                        DEL_PTR(mRays);
145                        DEL_PTR(mGeometry);
146                }
147
[474]148                friend bool operator<(const VspBspTraversalData &a, const VspBspTraversalData &b)
149                {
150                        return a.GetCost() < b.GetCost();
151                }
[463]152    };
[663]153
[600]154        typedef std::priority_queue<VspBspTraversalData> VspBspTraversalQueue;
[652]155       
[1288]156        class VspBspSubdivisionCandidate
[652]157        { 
[1288]158        public:
[660]159
[1233]160                VspBspSubdivisionCandidate(): mPriority(0), mRenderCostDecr(0)
[653]161                {};
162
[1233]163                VspBspSubdivisionCandidate(const Plane3 &plane, const VspBspTraversalData &tData):
[1145]164                mSplitPlane(plane), mParentData(tData), mPriority(0), mRenderCostDecr(0)
[652]165                {}
166
167                /** Returns cost of the traversal data.
168                */
[1020]169                float GetPriority() const
[652]170                {
171#if 1
[1020]172                        return mPriority;
[1016]173#else
[652]174                        return (float) (-mDepth); // for kd tree
175#endif
176                }
177
[1288]178                /// the current split plane
179                Plane3 mSplitPlane;
180                /// split axis of this plane (0, 1, 2, or 3 if non-axis-aligned)
181                int mSplitAxis;
182                /// the number of misses of max cost ratio until this split
183                int mMaxCostMisses;
184
185                /// parent data
186                VspBspTraversalData mParentData;
187                /// prioriry of this split
188                float mPriority;
189
190                float mRenderCostDecr;
191
192
[1233]193                friend bool operator<(const VspBspSubdivisionCandidate &a, const VspBspSubdivisionCandidate &b)
[652]194                {
[1020]195                        return a.GetPriority() < b.GetPriority();
[652]196                }
197    };
198
[1233]199        typedef std::priority_queue<VspBspSubdivisionCandidate> VspBspSplitQueue;
[652]200
[463]201        /** Default constructor creating an empty tree.
202        */
203        VspBspTree();
204
205        /** Default destructor.
206        */
207        ~VspBspTree();
208
209        /** Returns BSP Tree statistics.
210        */
211        const BspTreeStatistics &GetStatistics() const;
212 
213
214        /** Constructs the tree from a given set of rays.
215                @param sampleRays the set of sample rays the construction is based on
[1020]216                @param forcedBoundingBox overwrites the view space box
[463]217        */
[483]218        void Construct(const VssRayContainer &sampleRays,
219                                   AxisAlignedBox3 *forcedBoundingBox);
[463]220
[503]221        /** Returns list of BSP leaves with pvs smaller than
222                a certain threshold.
223                @param onlyUnmailed if only the unmailed leaves should be considered
[1016]224                @param maxPvs the maximal pvs of a leaf to be added (-1 means unlimited)
[463]225        */
[503]226        void CollectLeaves(vector<BspLeaf *> &leaves,
227                                           const bool onlyUnmailed = false,
228                                           const int maxPvs = -1) const;
[463]229
230        /** Returns box which bounds the whole tree.
231        */
[1027]232        AxisAlignedBox3 GetBoundingBox() const;
[463]233
234        /** Returns root of BSP tree.
235        */
236        BspNode *GetRoot() const;
237
238        /** Collects the leaf view cells of the tree
239                @param viewCells returns the view cells
240        */
[547]241        void CollectViewCells(ViewCellContainer &viewCells, bool onlyValid) const;
[463]242
243        /** A ray is cast possible intersecting the tree.
244                @param the ray that is cast.
245                @returns the number of intersections with objects stored in the tree.
246        */
247        int CastRay(Ray &ray);
248
249        /// bsp tree construction types
250        enum {FROM_INPUT_VIEW_CELLS, FROM_SCENE_GEOMETRY, FROM_SAMPLES};
251
252        /** finds neighbouring leaves of this tree node.
253        */
254        int FindNeighbors(BspNode *n,
255                                          vector<BspLeaf *> &neighbors,
256                                          const bool onlyUnmailed) const;
257
258        /** Constructs geometry associated with the half space intersections
259                leading to this node.
260        */
[503]261        void ConstructGeometry(BspNode *n, BspNodeGeometry &geom) const;
262       
263        /** Construct geometry of view cell.
[463]264        */
[582]265        void ConstructGeometry(ViewCell *vc, BspNodeGeometry &geom) const;
[463]266
267        /** Returns random leaf of BSP tree.
268                @param halfspace defines the halfspace from which the leaf is taken.
269        */
270        BspLeaf *GetRandomLeaf(const Plane3 &halfspace);
271
272        /** Returns random leaf of BSP tree.
273                @param onlyUnmailed if only unmailed leaves should be returned.
274        */
275        BspLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
276
277        /** Returns epsilon of this tree.
278        */
279        float GetEpsilon() const;
280
[485]281        /** Casts line segment into the tree.
282                @param origin the origin of the line segment
283                @param termination the end point of the line segment
284                @returns view cells intersecting the line segment.
285        */
[478]286    int CastLineSegment(const Vector3 &origin,
287                                                const Vector3 &termination,
288                                                ViewCellContainer &viewcells);
[466]289
[478]290               
291        /** Sets pointer to view cells manager.
292        */
293        void SetViewCellsManager(ViewCellsManager *vcm);
294
[485]295        /** Returns distance from node 1 to node 2.
[479]296        */
[485]297        int TreeDistance(BspNode *n1, BspNode *n2) const;
[479]298
[495]299        /** Collapses the tree with respect to the view cell partition.
[501]300                @returns number of collapsed nodes
[482]301        */
[501]302        int CollapseTree();
[482]303
[501]304        /** Returns view cell the current point is located in.
[879]305                @param point the current view point
306                @param active if currently active view cells should be returned or
307                elementary view cell
[501]308        */
[879]309        ViewCell *GetViewCell(const Vector3 &point, const bool active = false);
[492]310
[485]311
[487]312        /** Returns true if this view point is in a valid view space,
313                false otherwise.
314        */
315        bool ViewPointValid(const Vector3 &viewPoint) const;
316
[508]317        /** Returns view cell corresponding to
318                the invalid view space.
[489]319        */
[508]320        BspViewCell *GetOutOfBoundsCell();
[487]321
[508]322        /** Writes tree to output stream
[503]323        */
[1201]324        bool Export(OUT_STREAM &stream);
[503]325
[532]326        /** Casts beam, i.e. a 5D frustum of rays, into tree.
327                Tests conservative using the bounding box of the nodes.
328                @returns number of view cells it intersected
329        */
330        int CastBeam(Beam &beam);
331
[860]332        /** Finds approximate neighbours, i.e., finds correct neighbors
333                in most cases but sometimes more.
334        */
[600]335        int FindApproximateNeighbors(BspNode *n,
336                                                             vector<BspLeaf *> &neighbors,
337                                                                 const bool onlyUnmailed) const;
338
[574]339        /** Checks if tree validity-flags are right
340                with respect to view cell valitiy.
341                If not, marks subtree as invalid.
[542]342        */
[544]343        void ValidateTree();
[542]344
[574]345        /** Invalid view cells are added to the unbounded space
346        */
347        void CollapseViewCells();
348
[639]349        /** Collects rays stored in the leaves.
350        */
351        void CollectRays(VssRayContainer &rays);
352
[697]353        /** Intersects box with the tree and returns the number of intersected boxes.
354                @returns number of view cells found
355        */
356        int ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const;
[639]357
[1016]358        /// pointer to the hierarchy of view cells
[590]359        ViewCellsTree *mViewCellsTree;
[639]360
361
[463]362protected:
363
364        // --------------------------------------------------------------
365        // For sorting objects
366        // --------------------------------------------------------------
367        struct SortableEntry
368        {
[480]369                enum EType
370                {
371                        ERayMin,
372                        ERayMax
373                };
374
[463]375                int type;
376                float value;
[482]377                VssRay *ray;
[480]378 
[463]379                SortableEntry() {}
[482]380                SortableEntry(const int t, const float v, VssRay *r):type(t),
381                                          value(v), ray(r)
[480]382                {
383                }
[463]384               
[480]385                friend bool operator<(const SortableEntry &a, const SortableEntry &b)
[463]386                {
[480]387                        return a.value < b.value;
388                }
[463]389        };
390
[1027]391        void ComputeBoundingBox(const VssRayContainer &sampleRays,
392                                                        AxisAlignedBox3 *forcedBoundingBox);
393
[547]394        /** faster evaluation of split plane cost for kd axis aligned cells.
395        */
[542]396        float EvalAxisAlignedSplitCost(const VspBspTraversalData &data,
397                                                                   const AxisAlignedBox3 &box,
398                                                                   const int axis,
[547]399                                                                   const float &position,
400                                                                   float &pFront,
401                                                                   float &pBack) const;
[542]402
[664]403        /** Evaluates candidate for splitting.
404        */
[1233]405        void EvalSubdivisionCandidate(VspBspSubdivisionCandidate &splitData);
[652]406
[664]407        /** Computes priority of the traversal data and stores it in tData.
408        */
409        void EvalPriority(VspBspTraversalData &tData) const;
410
[860]411        /** Evaluates render cost decrease of next split.
412        */
[652]413        float EvalRenderCostDecrease(const Plane3 &candidatePlane,
[1145]414                                                                 const VspBspTraversalData &data,
415                                                                 float &normalizedOldRenderCost) const;
[652]416
[860]417        /** Constructs tree using the split priority queue.
418        */
[654]419        void ConstructWithSplitQueue(const PolygonContainer &polys, RayInfoContainer *rays);
[653]420
[860]421        /** Collects view cells in the subtree under root.
422        */
423        void CollectViewCells(BspNode *root,
424                                                  bool onlyValid,
425                                                  ViewCellContainer &viewCells,
426                                                  bool onlyUnmailed = false) const;
[653]427
[508]428        /** Returns view cell corresponding to
429                the invalid view space. If it does not exist, it is created.
430        */
431        BspViewCell *GetOrCreateOutOfBoundsCell();
432
[495]433        /** Collapses the tree with respect to the view cell partition,
434                i.e. leaves having the same view cell are collapsed.
[501]435                @param node the root of the subtree to be collapsed
436                @param collapsed returns the number of collapsed nodes
[495]437                @returns node of type leaf if the node could be collapsed,
438                this node otherwise
439        */
[501]440        BspNode *CollapseTree(BspNode *node, int &collapsed);
[508]441
[485]442        /** Helper function revalidating the view cell leaf list after merge.
443        */
[517]444        void RepairViewCellsLeafLists();
[485]445
[463]446        /** Evaluates tree stats in the BSP tree leafs.
447        */
448        void EvaluateLeafStats(const VspBspTraversalData &data);
449
450        /** Subdivides node with respect to the traversal data.
451            @param tStack current traversal stack
452                @param tData traversal data also holding node to be subdivided
453                @returns new root of the subtree
454        */
[600]455        BspNode *Subdivide(VspBspTraversalQueue &tStack,
[463]456                                           VspBspTraversalData &tData);
457
[1020]458        /** Subdivides node using a best split priority queue.
459            @param tQueue the best split priority queue
460                @param splitCandidate the candidate for the next split
461                @returns new root of the subtree
462        */
[653]463        BspNode *Subdivide(VspBspSplitQueue &tQueue,
[1233]464                                           VspBspSubdivisionCandidate &splitCandidate);
[653]465
[463]466        /** Constructs the tree from the given traversal data.
467                @param polys stores set of polygons on which subdivision may be based
[1020]468                @param rays stores set of rays on which subdivision may be based
[463]469        */
470        void Construct(const PolygonContainer &polys, RayInfoContainer *rays);
471
472        /** Selects the best possible splitting plane.
[472]473                @param plane returns the split plane
[463]474                @param leaf the leaf to be split
[1006]475                @param data the traversal data holding the polygons and rays which the split decision is based
476                @param frontData the front node traversal data (which may be updated to avoid repcomputations
477                @param backData the front node traversal data (which may be updated to avoid repcomputations
478                @param splitAxis 0 - 2 if axis aligned split, 3 if polygon-aligned split
479
[463]480                @note the polygons can be reordered in the process
[1006]481               
[472]482                @returns true if the cost of the split is under maxCostRatio
483
[463]484        */
[472]485        bool SelectPlane(Plane3 &plane,
486                                         BspLeaf *leaf,
[508]487                                         VspBspTraversalData &data,
488                                         VspBspTraversalData &frontData,
[612]489                                         VspBspTraversalData &backData,
490                                         int &splitAxis);
[463]491       
492        /** Strategies where the effect of the split plane is tested
493            on all input rays.
494
495                @returns the cost of the candidate split plane
496        */
[573]497        float EvalSplitPlaneCost(const Plane3 &candidatePlane,
498                                                         const VspBspTraversalData &data,
499                                                         BspNodeGeometry &geomFront,
500                                                         BspNodeGeometry &geomBack,
501                                                         float &pFront,
502                                                         float &pBack) const;
[463]503
[653]504        /** Subdivides leaf.
[1020]505                       
506                @param tData data object holding, e.g., a pointer to the leaf
507                @param frontData returns the data (e.g.,  pointer to the leaf) in front of the split plane
508                @param backData returns the data (e.g.,  pointer to the leaf) in the back of the split plane
[463]509               
510                @param rays the polygons to be filtered
511                @param frontRays returns the polygons in front of the split plane
[1020]512                @param coincident returns the polygons which are coincident to the plane and thus discarded
513                for traversal
[463]514
515                @returns the root of the subdivision
516        */
517
[653]518        BspInterior *SubdivideNode(const Plane3 &splitPlane,
519                                                           VspBspTraversalData &tData,
520                                                           VspBspTraversalData &frontData,
521                               VspBspTraversalData &backData,
522                                                           PolygonContainer &coincident);
[463]523
524        /** Extracts the meshes of the objects and adds them to polygons.
525                Adds object aabb to the aabb of the tree.
526                @param maxPolys the maximal number of objects to be stored as polygons
527                @returns the number of polygons
528        */
529        int AddToPolygonSoup(const ObjectContainer &objects,
530                                                 PolygonContainer &polys,
531                                                 int maxObjects = 0);
532
533        /** Extracts the meshes of the view cells and and adds them to polygons.
534                Adds view cell aabb to the aabb of the tree.
535                @param maxPolys the maximal number of objects to be stored as polygons
536                @returns the number of polygons
537        */
538        int AddToPolygonSoup(const ViewCellContainer &viewCells,
539                                                 PolygonContainer &polys,
540                                                 int maxObjects = 0);
541
542        /** Extract polygons of this mesh and add to polygon container.
543                @param mesh the mesh that drives the polygon construction
544                @param parent the parent intersectable this polygon is constructed from
545                @returns number of polygons
546        */
547        int AddMeshToPolygons(Mesh *mesh, PolygonContainer &polys, MeshInstance *parent);
548
[495]549        /** Selects an axis aligned for the next split.
550                @returns cost for this split
[463]551        */
[480]552        float SelectAxisAlignedPlane(Plane3 &plane,
[491]553                                                                 const VspBspTraversalData &tData,
[495]554                                                                 int &axis,
[508]555                                                                 BspNodeGeometry **frontGeom,
556                                                                 BspNodeGeometry **backGeom,
[547]557                                                                 float &pFront,
558                                                                 float &pBack,
559                                                                 const bool useKdSplit);
[480]560
[1084]561        /** Sorts split candidates for cost heuristics using axis aligned splits.
[463]562                @param polys the input for choosing split candidates
563                @param axis the current split axis
564                @param splitCandidates returns sorted list of split candidates
565        */
[1233]566        void SortSubdivisionCandidates(const RayInfoContainer &rays,
[710]567                                                         const int axis,
568                                                         float minBand,
569                                                         float maxBand);
[463]570
[480]571        /** Computes best cost for axis aligned planes.
572        */
573        float BestCostRatioHeuristics(const RayInfoContainer &rays,
574                                                                  const AxisAlignedBox3 &box,
575                                                                  const int pvsSize,
[710]576                                                                  const int axis,
[480]577                                                                  float &position);
578
[463]579        /** Subdivides the rays into front and back rays according to the split plane.
580               
581                @param plane the split plane
582                @param rays contains the rays to be split. The rays are
583                           distributed into front and back rays.
584                @param frontRays returns rays on the front side of the plane
585                @param backRays returns rays on the back side of the plane
586               
587                @returns the number of splits
588        */
589        int SplitRays(const Plane3 &plane,
590                                  RayInfoContainer &rays,
591                              RayInfoContainer &frontRays,
[639]592                                  RayInfoContainer &backRays) const;
[463]593
594
595        /** Extracts the split planes representing the space bounded by node n.
596        */
597        void ExtractHalfSpaces(BspNode *n, vector<Plane3> &halfSpaces) const;
598
599        /** Adds the object to the pvs of the front and back leaf with a given classification.
600
601                @param obj the object to be added
602                @param cf the ray classification regarding the split plane
603                @param frontPvs returns the PVS of the front partition
604                @param backPvs returns the PVS of the back partition
605       
606        */
[508]607        void AddObjToPvs(Intersectable *obj,
608                                         const int cf,
[729]609                                         float &frontPvs,
610                                         float &backPvs,
611                                         float &totalPvs) const;
[463]612       
613        /** Computes PVS size induced by the rays.
614        */
615        int ComputePvsSize(const RayInfoContainer &rays) const;
616
617        /** Returns true if tree can be terminated.
618        */
[1251]619        bool LocalTerminationCriteriaMet(const VspBspTraversalData &data) const;
[463]620
[694]621        /** Returns true if global tree can be terminated.
622        */
[1251]623        bool GlobalTerminationCriteriaMet(const VspBspTraversalData &data) const;
[654]624
[463]625        /** Computes accumulated ray lenght of this rays.
626        */
627        float AccumulatedRayLength(const RayInfoContainer &rays) const;
628
629        /** Splits polygons with respect to the split plane.
630
631                @param plane the split plane
632                @param polys the polygons to be split. the polygons are consumed and
633                           distributed to the containers frontPolys, backPolys, coincident.
634                @param frontPolys returns the polygons in the front of the split plane
635                @param backPolys returns the polygons in the back of the split plane
636                @param coincident returns the polygons coincident to the split plane
637
638                @returns the number of splits   
639        */
640        int SplitPolygons(const Plane3 &plane,
641                                          PolygonContainer &polys,
642                                          PolygonContainer &frontPolys,
643                                          PolygonContainer &backPolys,
644                                          PolygonContainer &coincident) const;
645
646        /** Adds ray sample contributions to the PVS.
647                @param sampleContributions the number contributions of the samples
648                @param contributingSampels the number of contributing rays
649               
650        */
651        void AddToPvs(BspLeaf *leaf,
652                                  const RayInfoContainer &rays,
[556]653                                  float &sampleContributions,
[463]654                                  int &contributingSamples);
655
[580]656       
[473]657        /** Take 3 ray endpoints, where two are minimum and one a maximum
658                point or the other way round.
659        */
660        Plane3 ChooseCandidatePlane(const RayInfoContainer &rays) const;
[466]661
[473]662        /** Take plane normal as plane normal and the midpoint of the ray.
[485]663                PROBLEM: does not resemble any point where visibility is
664                likely to change
[473]665        */
666        Plane3 ChooseCandidatePlane2(const RayInfoContainer &rays) const;
667
[485]668        /** Fit the plane between the two lines so that the plane
669                has equal shortest distance to both lines.
[473]670        */
671        Plane3 ChooseCandidatePlane3(const RayInfoContainer &rays) const;
[466]672 
[580]673        /** Collects candidates for merging.
674                @param leaves the leaves to be merged
675                @returns number of leaves in queue
[486]676        */
[580]677        int CollectMergeCandidates(const vector<BspLeaf *> leaves, vector<MergeCandidate> &candidates);
[478]678
[580]679        /** Collects candidates for the merge in the merge queue.
680                @returns number of leaves in queue
681        */
682        int CollectMergeCandidates(const VssRayContainer &rays, vector<MergeCandidate> &candidates);
[547]683       
[648]684        /** Preprocesses polygons and throws out all polygons which are coincident to
685                the view space box faces (they can be problematic).
686        */
687        void PreprocessPolygons(PolygonContainer &polys);
[580]688       
[487]689        /** Propagates valid flag up the tree.
690        */
691        void PropagateUpValidity(BspNode *node);
692
[508]693        /** Writes the node to disk
[955]694                @note: should be implemented as visitor.
[489]695        */
[1201]696        void ExportNode(BspNode *node, OUT_STREAM &stream);
[489]697
[587]698        /** Returns estimated memory usage of tree.
[508]699        */
[1006]700        float GetMemUsage() const;
[600]701        //float GetMemUsage(const VspBspTraversalQueue &tstack) const;
[508]702
[551]703
[1145]704        void EvalSubdivisionStats(const VspBspTraversalData &tData,
705                                                      const VspBspTraversalData &tFrontData,
706                                                          const VspBspTraversalData &tBackData
707                                                          );
708
[1020]709        /** Adds stats to subdivision log file.
710        */
711        void AddSubdivisionStats(const int viewCells,
712                                                         const float renderCostDecr,
713                                                         const float splitCandidateCost,
714                                                         const float totalRenderCost,
715                                                         const float avgRenderCost);
[564]716
[1006]717        ///////////////////////////////////////////////////////////
[1133]718
719
[1006]720protected:
721       
[463]722        /// Pointer to the root of the tree
723        BspNode *mRoot;
[1006]724       
725        /// the pointer to the view cells manager
726        ViewCellsManager *mViewCellsManager;
727       
728        /// View cell corresponding to the space outside the valid view space
729        BspViewCell *mOutOfBoundsCell;
730
731        /// the bsp tree statistics
[574]732        BspTreeStatistics mBspStats;
[463]733
[1006]734        /// sorted split candidates used for sweep-heuristics
[1233]735        vector<SortableEntry> *mLocalSubdivisionCandidates;
[463]736
737        /// box around the whole view domain
738        AxisAlignedBox3 mBox;
739
[1006]740       
741        //-- termination critera
[612]742
[463]743        /// minimal number of rays before subdivision termination
744        int mTermMinRays;
745        /// maximal possible depth
746        int mTermMaxDepth;
[547]747        /// mininum probability
748        float mTermMinProbability;
[463]749        /// mininum PVS
750        int mTermMinPvs;
751        /// maximal contribution per ray
752        float mTermMaxRayContribution;
753        /// minimal accumulated ray length
754        float mTermMinAccRayLength;
[1006]755        /// maximal acceptable cost ratio
756        float mTermMaxCostRatio;
757        /// tolerance value indicating how often the max cost ratio can be failed
758        int mTermMissTolerance;
[463]759
[547]760
[1006]761        //-- termination criteria for
762        //-- hybrid stategy where only axis aligned split are used until
763        //-- a certain point and then also polygon aligned split are taken
764         
765        /// minimal number of rays where axis aligned split is taken
766        int mTermMinRaysForAxisAligned;
767        /// max ray contribution
768        float mTermMaxRayContriForAxisAligned;
769        /// weight for heuristics evaluation
770        float mAxisAlignedCtDivCi;
771        /// spezifies the split border of the axis aligned split
772        float mAxisAlignedSplitBorder;
773
[1449]774        ///////////
[1006]775        //-- global terminatino criteria
[654]776        float mTermMinGlobalCostRatio;
777        int mTermGlobalCostMissTolerance;
[1449]778       
[1006]779        /// maximal number of view cells
780        int mMaxViewCells;
781        /// maximal tree memory
782        float mMaxMemory;
783        /// the tree is out of memory
784        bool mOutOfMemory;
[508]785
786
[463]787        /// number of candidates evaluated for the next split plane
788        int mMaxPolyCandidates;
789        /// number of candidates for split planes evaluated using the rays
790        int mMaxRayCandidates;
[1006]791       
792
[1449]793        //////////
[1006]794        //-- axis aligned split criteria
795
796        /// if only driving axis should be used for choosing the axis-aligned split
797        bool mOnlyDrivingAxis;
798        /// if heuristics should be used to place the split plane of an axis-aligned split
799        bool mUseCostHeuristics;
800        /// if driving axis should taken if max cost is exceeded for
801        /// all evaluated axis aligned split plane candidates
802        bool mUseDrivingAxisIfMaxCostViolated;
803        /// minimal relative position where the split axis can be placed
804        float mMinBand;
805        /// maximal relative position where the split axis can be placed
806        float mMaxBand;
[463]807        /// balancing factor for PVS criterium
808        float mCtDivCi;
[1006]809        /// if random split axis should be used
810        bool mUseRandomAxis;
811        /// if vsp bsp tree should simulate octree
812        bool mCirculatingAxis;
[463]813
814
[1006]815       
816        /// priority queue strategy
817        enum {BREATH_FIRST, DEPTH_FIRST, COST_BASED};
818        /// if we should use breath first priority for the splits
819        int mNodePriorityQueueType;
820        /// if split cost queue should be used to compute next best split
821        bool mUseSplitCostQueue;
822       
[472]823
[1006]824       
825        /// Strategies for choosing next split plane.
826        enum {NO_STRATEGY = 0,
827                  RANDOM_POLYGON = 1,
828                  AXIS_ALIGNED = 2,
829                  LEAST_RAY_SPLITS = 256,
830                  BALANCED_RAYS = 512,
831                  PVS = 1024
832                };
833
834        /// strategy to get the best split plane
835        int mSplitPlaneStrategy;
836
[463]837        //-- factors guiding the split plane heuristics
[1006]838
[463]839        float mLeastRaySplitsFactor;
840        float mBalancedRaysFactor;
841        float mPvsFactor;
842
[1006]843
[547]844        /// if area or volume should be used for PVS heuristics
845        bool mUseAreaForPvs;
[472]846        /// tolerance for polygon split
[463]847        float mEpsilon;
[472]848        /// maximal number of test rays used to evaluate candidate split plane
[463]849        int mMaxTests;
[474]850        /// normalizes different bsp split plane criteria
851        float mCostNormalizer;
[478]852        // if rays should be stored in leaves
853        bool mStoreRays;
[1020]854        /// weight between  render cost (expected value) and variance
[1006]855        float mRenderCostWeight;
[1020]856        /// weight between  render cost decrease and node render cost
857        float mRenderCostDecreaseWeight;
[478]858
[1006]859        //-- subdivision statistics
[485]860
[1006]861        /// subdivision stats output file
862        ofstream mSubdivisionStats;
[600]863        float mTotalCost;
[607]864        int mTotalPvsSize;
865
[801]866
[663]867        /// use polygon split whenever there are polys left
[607]868        bool mUsePolygonSplitIfAvailable;
[663]869        /// current time stamp (used for keeping split history)
[610]870        int mTimeStamp;
[663]871        /// number of currenly generated view cells
[612]872        int mCreatedViewCells;
873
[735]874
[580]875private:
[557]876
[463]877        /// Generates unique ids for PVS criterium
878        static void GenerateUniqueIdsForPvs();
879
880        //-- unique ids for PVS criterium
881        static int sFrontId;
882        static int sBackId;
883        static int sFrontAndBackId;
884};
885
[860]886}
[578]887
[478]888
[463]889#endif
Note: See TracBrowser for help on using the repository browser.