source: GTP/trunk/Lib/Vis/Preprocessing/src/VspBspTree.h @ 1632

Revision 1632, 25.3 KB checked in by mattausch, 18 years ago (diff)
Line 
1#ifndef _VspBspTree_H__
2#define _VspBspTree_H__
3
4#include "Mesh.h"
5#include "Containers.h"
6#include "Polygon3.h"
7#include <stack>
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "ViewCellBsp.h"
12
13
14
15namespace GtpVisibilityPreprocessor {
16
17class ViewCellLeaf;
18//class BspViewCell;
19class Plane3;
20class VspBspTree; 
21class BspInterior;
22class BspNode;
23class AxisAlignedBox3;
24class Ray;
25class ViewCellsStatistics;
26class ViewCellsManager;
27class MergeCandidate;
28class Beam;
29class ViewCellsTree;
30//class Environment;
31
32/**
33        This is a view space partitioning specialised BSPtree. 
34        There are no polygon splits, but we split the sample rays.
35        The candidates for the next split plane are evaluated only
36        by checking the sampled visibility information.
37        The polygons are employed merely as candidates for the next split planes.
38*/
39class VspBspTree
40{
41        friend class ViewCellsParseHandlers;
42        friend class VspBspViewCellsManager;
43public:
44       
45        /** Additional data which is passed down the BSP tree during traversal.
46        */
47        class VspBspTraversalData
48        { 
49        public:
50                /// the current node
51                BspNode *mNode;
52                /// polygonal data for splitting
53                PolygonContainer *mPolygons;
54                /// current depth
55                int mDepth;
56                /// rays piercing this node
57                RayInfoContainer *mRays;
58                /// the probability that this node contains view point
59                float mProbability;
60                /// geometry of node as induced by planes
61                BspNodeGeometry *mGeometry;
62                /// pvs size
63                int mPvs;
64                /// how often this branch has missed the max-cost ratio
65                int mMaxCostMisses;
66                /// if this node is a kd-node (i.e., boundaries are axis aligned
67                bool mIsKdNode;
68                // current axis
69                int mAxis;
70                // current priority
71                float mPriority;
72
73               
74                /** Returns average ray contribution.
75                */
76                float GetAvgRayContribution() const
77                {
78                        return (float)mPvs / ((float)mRays->size() + Limits::Small);
79                }
80
81
82                VspBspTraversalData():
83                mNode(NULL),
84                mPolygons(NULL),
85                mDepth(0),
86                mRays(NULL),
87                mPvs(0),
88                mProbability(0.0),
89                mGeometry(NULL),
90                mMaxCostMisses(0),
91                mIsKdNode(false),
92                mPriority(0),
93                mAxis(0)
94                {}
95               
96                VspBspTraversalData(BspNode *node,
97                                                        PolygonContainer *polys,
98                                                        const int depth,
99                                                        RayInfoContainer *rays,
100                                                        const int pvs,
101                                                        const float p,
102                                                        BspNodeGeometry *geom):
103                mNode(node),
104                mPolygons(polys),
105                mDepth(depth),
106                mRays(rays),
107                mPvs(pvs),
108                mProbability(p),
109                mGeometry(geom),
110                mMaxCostMisses(0),
111                mIsKdNode(false),
112                mPriority(0),
113                mAxis(0)
114                {}
115
116                VspBspTraversalData(PolygonContainer *polys,
117                                                        const int depth,
118                                                        RayInfoContainer *rays,
119                                                        BspNodeGeometry *geom):
120                mNode(NULL),
121                mPolygons(polys),
122                mDepth(depth),
123                mRays(rays),
124                mPvs(0),
125                mProbability(0),
126                mGeometry(geom),
127                mMaxCostMisses(0),
128                mIsKdNode(false),
129                mAxis(0)
130                {}
131
132                /** Returns priority of the traversal data.
133                */
134                float GetCost() const
135                {
136                        //cout << mPriority << endl;
137                        return mPriority;
138                }
139
140                // deletes contents and sets them to NULL
141                void Clear()
142                {
143                        DEL_PTR(mPolygons);
144                        DEL_PTR(mRays);
145                        DEL_PTR(mGeometry);
146                }
147
148                friend bool operator<(const VspBspTraversalData &a, const VspBspTraversalData &b)
149                {
150                        return a.GetCost() < b.GetCost();
151                }
152    };
153
154        typedef std::priority_queue<VspBspTraversalData> VspBspTraversalQueue;
155       
156        class VspBspSubdivisionCandidate
157        { 
158        public:
159
160                VspBspSubdivisionCandidate(): mPriority(0), mRenderCostDecr(0)
161                {};
162
163                VspBspSubdivisionCandidate(const Plane3 &plane, const VspBspTraversalData &tData):
164                mSplitPlane(plane), mParentData(tData), mPriority(0), mRenderCostDecr(0)
165                {}
166
167                /** Returns cost of the traversal data.
168                */
169                float GetPriority() const
170                {
171#if 1
172                        return mPriority;
173#else
174                        return (float) (-mDepth); // for kd tree
175#endif
176                }
177
178                /// the current split plane
179                Plane3 mSplitPlane;
180                /// split axis of this plane (0, 1, 2, or 3 if non-axis-aligned)
181                int mSplitAxis;
182                /// the number of misses of max cost ratio until this split
183                int mMaxCostMisses;
184
185                /// parent data
186                VspBspTraversalData mParentData;
187                /// prioriry of this split
188                float mPriority;
189
190                float mRenderCostDecr;
191
192
193                friend bool operator<(const VspBspSubdivisionCandidate &a, const VspBspSubdivisionCandidate &b)
194                {
195                        return a.GetPriority() < b.GetPriority();
196                }
197    };
198
199        typedef std::priority_queue<VspBspSubdivisionCandidate> VspBspSplitQueue;
200
201        /** Default constructor creating an empty tree.
202        */
203        VspBspTree();
204
205        /** Default destructor.
206        */
207        ~VspBspTree();
208
209        /** Returns BSP Tree statistics.
210        */
211        const BspTreeStatistics &GetStatistics() const;
212 
213
214        /** Constructs the tree from a given set of rays.
215                @param sampleRays the set of sample rays the construction is based on
216                @param forcedBoundingBox overwrites the view space box
217        */
218        void Construct(const VssRayContainer &sampleRays,
219                                   AxisAlignedBox3 *forcedBoundingBox);
220
221        /** Returns list of BSP leaves with pvs smaller than
222                a certain threshold.
223                @param onlyUnmailed if only the unmailed leaves should be considered
224                @param maxPvs the maximal pvs of a leaf to be added (-1 means unlimited)
225        */
226        void CollectLeaves(vector<BspLeaf *> &leaves,
227                                           const bool onlyUnmailed = false,
228                                           const int maxPvs = -1) const;
229
230        /** Returns box which bounds the whole tree.
231        */
232        AxisAlignedBox3 GetBoundingBox() const;
233
234        /** Returns root of BSP tree.
235        */
236        BspNode *GetRoot() const;
237
238        /** Collects the leaf view cells of the tree
239                @param viewCells returns the view cells
240        */
241        void CollectViewCells(ViewCellContainer &viewCells, bool onlyValid) const;
242
243        /** A ray is cast possible intersecting the tree.
244                @param the ray that is cast.
245                @returns the number of intersections with objects stored in the tree.
246        */
247        int CastRay(Ray &ray);
248
249        /// bsp tree construction types
250        enum {FROM_INPUT_VIEW_CELLS, FROM_SCENE_GEOMETRY, FROM_SAMPLES};
251
252        /** finds neighbouring leaves of this tree node.
253        */
254        int FindNeighbors(BspNode *n,
255                                          vector<BspLeaf *> &neighbors,
256                                          const bool onlyUnmailed) const;
257
258        /** Constructs geometry associated with the half space intersections
259                leading to this node.
260        */
261        void ConstructGeometry(BspNode *n, BspNodeGeometry &geom) const;
262       
263        /** Construct geometry of view cell.
264        */
265        void ConstructGeometry(ViewCell *vc, BspNodeGeometry &geom) const;
266
267        /** Returns random leaf of BSP tree.
268                @param halfspace defines the halfspace from which the leaf is taken.
269        */
270        BspLeaf *GetRandomLeaf(const Plane3 &halfspace);
271
272        /** Returns random leaf of BSP tree.
273                @param onlyUnmailed if only unmailed leaves should be returned.
274        */
275        BspLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
276
277        /** Returns epsilon of this tree.
278        */
279        float GetEpsilon() const;
280
281        /** Casts line segment into the tree.
282                @param origin the origin of the line segment
283                @param termination the end point of the line segment
284                @returns view cells intersecting the line segment.
285        */
286    int CastLineSegment(const Vector3 &origin,
287                                                const Vector3 &termination,
288                                                ViewCellContainer &viewcells);
289
290               
291        /** Sets pointer to view cells manager.
292        */
293        void SetViewCellsManager(ViewCellsManager *vcm);
294
295        /** Returns distance from node 1 to node 2.
296        */
297        int TreeDistance(BspNode *n1, BspNode *n2) const;
298
299        /** Collapses the tree with respect to the view cell partition.
300                @returns number of collapsed nodes
301        */
302        int CollapseTree();
303
304        /** Returns view cell the current point is located in.
305                @param point the current view point
306                @param active if currently active view cells should be returned or
307                elementary view cell
308        */
309        ViewCell *GetViewCell(const Vector3 &point, const bool active = false);
310
311
312        /** Returns true if this view point is in a valid view space,
313                false otherwise.
314        */
315        bool ViewPointValid(const Vector3 &viewPoint) const;
316
317        /** Returns view cell corresponding to
318                the invalid view space.
319        */
320        BspViewCell *GetOutOfBoundsCell();
321
322        /** Writes tree to output stream
323        */
324        bool Export(OUT_STREAM &stream);
325
326        /** Casts beam, i.e. a 5D frustum of rays, into tree.
327                Tests conservative using the bounding box of the nodes.
328                @returns number of view cells it intersected
329        */
330        int CastBeam(Beam &beam);
331
332        /** Finds approximate neighbours, i.e., finds correct neighbors
333                in most cases but sometimes more.
334        */
335        int FindApproximateNeighbors(BspNode *n,
336                                                             vector<BspLeaf *> &neighbors,
337                                                                 const bool onlyUnmailed) const;
338
339        /** Checks if tree validity-flags are right
340                with respect to view cell valitiy.
341                If not, marks subtree as invalid.
342        */
343        void ValidateTree();
344
345        /** Invalid view cells are added to the unbounded space
346        */
347        void CollapseViewCells();
348
349        /** Collects rays stored in the leaves.
350        */
351        void CollectRays(VssRayContainer &rays);
352
353        /** Intersects box with the tree and returns the number of intersected boxes.
354                @returns number of view cells found
355        */
356        int ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const;
357
358        /** Pointer to the view cells tree.
359        */
360        void SetViewCellsTree(ViewCellsTree *vct);
361       
362        /** Returns true if this view cell prepresents
363                invalid view space.
364        */
365        bool IsOutOfBounds(ViewCell *vc) const;
366
367       
368
369protected:
370
371        // --------------------------------------------------------------
372        // For sorting objects
373        // --------------------------------------------------------------
374        struct SortableEntry
375        {
376                enum EType
377                {
378                        ERayMin,
379                        ERayMax
380                };
381
382                int type;
383                float value;
384                VssRay *ray;
385 
386                SortableEntry() {}
387                SortableEntry(const int t, const float v, VssRay *r):type(t),
388                                          value(v), ray(r)
389                {
390                }
391               
392                friend bool operator<(const SortableEntry &a, const SortableEntry &b)
393                {
394                        return a.value < b.value;
395                }
396        };
397
398        void ComputeBoundingBox(const VssRayContainer &sampleRays,
399                                                        AxisAlignedBox3 *forcedBoundingBox);
400
401        /** faster evaluation of split plane cost for kd axis aligned cells.
402        */
403        float EvalAxisAlignedSplitCost(const VspBspTraversalData &data,
404                                                                   const AxisAlignedBox3 &box,
405                                                                   const int axis,
406                                                                   const float &position,
407                                                                   float &pFront,
408                                                                   float &pBack) const;
409
410        /** Evaluates candidate for splitting.
411        */
412        void EvalSubdivisionCandidate(VspBspSubdivisionCandidate &splitData);
413
414        /** Computes priority of the traversal data and stores it in tData.
415        */
416        void EvalPriority(VspBspTraversalData &tData) const;
417
418        /** Evaluates render cost decrease of next split.
419        */
420        float EvalRenderCostDecrease(const Plane3 &candidatePlane,
421                                                                 const VspBspTraversalData &data,
422                                                                 float &normalizedOldRenderCost) const;
423
424        /** Constructs tree using the split priority queue.
425        */
426        void ConstructWithSplitQueue(const PolygonContainer &polys, RayInfoContainer *rays);
427
428        /** Collects view cells in the subtree under root.
429        */
430        void CollectViewCells(BspNode *root,
431                                                  bool onlyValid,
432                                                  ViewCellContainer &viewCells,
433                                                  bool onlyUnmailed = false) const;
434
435        /** Returns view cell corresponding to
436                the invalid view space. If it does not exist, it is created.
437        */
438        BspViewCell *GetOrCreateOutOfBoundsCell();
439
440        /** Collapses the tree with respect to the view cell partition,
441                i.e. leaves having the same view cell are collapsed.
442                @param node the root of the subtree to be collapsed
443                @param collapsed returns the number of collapsed nodes
444                @returns node of type leaf if the node could be collapsed,
445                this node otherwise
446        */
447        BspNode *CollapseTree(BspNode *node, int &collapsed);
448
449        /** Helper function revalidating the view cell leaf list after merge.
450        */
451        void RepairViewCellsLeafLists();
452
453        /** Evaluates tree stats in the BSP tree leafs.
454        */
455        void EvaluateLeafStats(const VspBspTraversalData &data);
456
457        /** Subdivides node with respect to the traversal data.
458            @param tStack current traversal stack
459                @param tData traversal data also holding node to be subdivided
460                @returns new root of the subtree
461        */
462        BspNode *Subdivide(VspBspTraversalQueue &tStack,
463                                           VspBspTraversalData &tData);
464
465        /** Subdivides node using a best split priority queue.
466            @param tQueue the best split priority queue
467                @param splitCandidate the candidate for the next split
468                @returns new root of the subtree
469        */
470        BspNode *Subdivide(VspBspSplitQueue &tQueue,
471                                           VspBspSubdivisionCandidate &splitCandidate);
472
473        /** Constructs the tree from the given traversal data.
474                @param polys stores set of polygons on which subdivision may be based
475                @param rays stores set of rays on which subdivision may be based
476        */
477        void Construct(const PolygonContainer &polys, RayInfoContainer *rays);
478
479        /** Selects the best possible splitting plane.
480                @param plane returns the split plane
481                @param leaf the leaf to be split
482                @param data the traversal data holding the polygons and rays which the split decision is based
483                @param frontData the front node traversal data (which may be updated to avoid repcomputations
484                @param backData the front node traversal data (which may be updated to avoid repcomputations
485                @param splitAxis 0 - 2 if axis aligned split, 3 if polygon-aligned split
486
487                @note the polygons can be reordered in the process
488               
489                @returns true if the cost of the split is under maxCostRatio
490
491        */
492        bool SelectPlane(Plane3 &plane,
493                                         BspLeaf *leaf,
494                                         VspBspTraversalData &data,
495                                         VspBspTraversalData &frontData,
496                                         VspBspTraversalData &backData,
497                                         int &splitAxis);
498       
499        /** Strategies where the effect of the split plane is tested
500            on all input rays.
501
502                @returns the cost of the candidate split plane
503        */
504        float EvalSplitPlaneCost(const Plane3 &candidatePlane,
505                                                         const VspBspTraversalData &data,
506                                                         BspNodeGeometry &geomFront,
507                                                         BspNodeGeometry &geomBack,
508                                                         float &pFront,
509                                                         float &pBack) const;
510
511        /** Subdivides leaf.
512                       
513                @param tData data object holding, e.g., a pointer to the leaf
514                @param frontData returns the data (e.g.,  pointer to the leaf) in front of the split plane
515                @param backData returns the data (e.g.,  pointer to the leaf) in the back of the split plane
516               
517                @param rays the polygons to be filtered
518                @param frontRays returns the polygons in front of the split plane
519                @param coincident returns the polygons which are coincident to the plane and thus discarded
520                for traversal
521
522                @returns the root of the subdivision
523        */
524
525        BspInterior *SubdivideNode(const Plane3 &splitPlane,
526                                                           VspBspTraversalData &tData,
527                                                           VspBspTraversalData &frontData,
528                               VspBspTraversalData &backData,
529                                                           PolygonContainer &coincident);
530
531        /** Extracts the meshes of the objects and adds them to polygons.
532                Adds object aabb to the aabb of the tree.
533                @param maxPolys the maximal number of objects to be stored as polygons
534                @returns the number of polygons
535        */
536        int AddToPolygonSoup(const ObjectContainer &objects,
537                                                 PolygonContainer &polys,
538                                                 int maxObjects = 0);
539
540        void ExtractPolygons(Intersectable *obj, PolygonContainer &polys) const;
541
542        /** Extract polygons of this mesh and adds them to container.
543                @param mesh the mesh that drives the polygon construction
544                @returns number of polygons
545        */
546        int AddMeshToPolygons(Mesh *mesh, PolygonContainer &polys) const;
547
548        /** Selects an axis aligned for the next split.
549                @returns cost for this split
550        */
551        float SelectAxisAlignedPlane(Plane3 &plane,
552                                                                 const VspBspTraversalData &tData,
553                                                                 int &axis,
554                                                                 BspNodeGeometry **frontGeom,
555                                                                 BspNodeGeometry **backGeom,
556                                                                 float &pFront,
557                                                                 float &pBack,
558                                                                 const bool useKdSplit);
559
560        /** Sorts split candidates for cost heuristics using axis aligned splits.
561                @param polys the input for choosing split candidates
562                @param axis the current split axis
563                @param splitCandidates returns sorted list of split candidates
564        */
565        void SortSubdivisionCandidates(const RayInfoContainer &rays,
566                                                         const int axis,
567                                                         float minBand,
568                                                         float maxBand);
569
570        /** Computes best cost for axis aligned planes.
571        */
572        float BestCostRatioHeuristics(const RayInfoContainer &rays,
573                                                                  const AxisAlignedBox3 &box,
574                                                                  const int pvsSize,
575                                                                  const int axis,
576                                                                  float &position);
577
578        /** Subdivides the rays into front and back rays according to the split plane.
579               
580                @param plane the split plane
581                @param rays contains the rays to be split. The rays are
582                           distributed into front and back rays.
583                @param frontRays returns rays on the front side of the plane
584                @param backRays returns rays on the back side of the plane
585               
586                @returns the number of splits
587        */
588        int SplitRays(const Plane3 &plane,
589                                  RayInfoContainer &rays,
590                              RayInfoContainer &frontRays,
591                                  RayInfoContainer &backRays) const;
592
593
594        /** Extracts the split planes representing the space bounded by node n.
595        */
596        void ExtractHalfSpaces(BspNode *n, vector<Plane3> &halfSpaces) const;
597
598        /** Adds the object to the pvs of the front and back leaf with a given classification.
599
600                @param obj the object to be added
601                @param cf the ray classification regarding the split plane
602                @param frontPvs returns the PVS of the front partition
603                @param backPvs returns the PVS of the back partition
604       
605        */
606        void AddObjToPvs(Intersectable *obj,
607                                         const int cf,
608                                         float &frontPvs,
609                                         float &backPvs,
610                                         float &totalPvs) const;
611       
612        /** Computes PVS size induced by the rays.
613        */
614        int ComputePvsSize(const RayInfoContainer &rays) const;
615
616        /** Returns true if tree can be terminated.
617        */
618        bool LocalTerminationCriteriaMet(const VspBspTraversalData &data) const;
619
620        /** Returns true if global tree can be terminated.
621        */
622        bool GlobalTerminationCriteriaMet(const VspBspTraversalData &data) const;
623
624        /** Computes accumulated ray lenght of this rays.
625        */
626        float AccumulatedRayLength(const RayInfoContainer &rays) const;
627
628        /** Splits polygons with respect to the split plane.
629
630                @param plane the split plane
631                @param polys the polygons to be split. the polygons are consumed and
632                           distributed to the containers frontPolys, backPolys, coincident.
633                @param frontPolys returns the polygons in the front of the split plane
634                @param backPolys returns the polygons in the back of the split plane
635                @param coincident returns the polygons coincident to the split plane
636
637                @returns the number of splits   
638        */
639        int SplitPolygons(const Plane3 &plane,
640                                          PolygonContainer &polys,
641                                          PolygonContainer &frontPolys,
642                                          PolygonContainer &backPolys,
643                                          PolygonContainer &coincident) const;
644
645        /** Adds ray sample contributions to the PVS.
646                @param sampleContributions the number contributions of the samples
647                @param contributingSampels the number of contributing rays
648               
649        */
650        void AddToPvs(BspLeaf *leaf,
651                                  const RayInfoContainer &rays,
652                                  float &sampleContributions,
653                                  int &contributingSamples);
654
655       
656        /** Take 3 ray endpoints, where two are minimum and one a maximum
657                point or the other way round.
658        */
659        Plane3 ChooseCandidatePlane(const RayInfoContainer &rays) const;
660
661        /** Take plane normal as plane normal and the midpoint of the ray.
662                PROBLEM: does not resemble any point where visibility is
663                likely to change
664        */
665        Plane3 ChooseCandidatePlane2(const RayInfoContainer &rays) const;
666
667        /** Fit the plane between the two lines so that the plane
668                has equal shortest distance to both lines.
669        */
670        Plane3 ChooseCandidatePlane3(const RayInfoContainer &rays) const;
671 
672        /** Collects candidates for merging.
673                @param leaves the leaves to be merged
674                @returns number of leaves in queue
675        */
676        int CollectMergeCandidates(const vector<BspLeaf *> leaves, vector<MergeCandidate> &candidates);
677
678        /** Collects candidates for the merge in the merge queue.
679                @returns number of leaves in queue
680        */
681        int CollectMergeCandidates(const VssRayContainer &rays, vector<MergeCandidate> &candidates);
682       
683        /** Preprocesses polygons and throws out all polygons which are coincident to
684                the view space box faces (they can be problematic).
685        */
686        void PreprocessPolygons(PolygonContainer &polys);
687       
688        /** Propagates valid flag up the tree.
689        */
690        void PropagateUpValidity(BspNode *node);
691
692        /** Writes the node to disk
693                @note: should be implemented as visitor.
694        */
695        void ExportNode(BspNode *node, OUT_STREAM &stream);
696
697        /** Returns estimated memory usage of tree.
698        */
699        float GetMemUsage() const;
700        //float GetMemUsage(const VspBspTraversalQueue &tstack) const;
701
702
703        void EvalSubdivisionStats(const VspBspTraversalData &tData,
704                                                      const VspBspTraversalData &tFrontData,
705                                                          const VspBspTraversalData &tBackData
706                                                          );
707
708        /** Adds stats to subdivision log file.
709        */
710        void AddSubdivisionStats(const int viewCells,
711                                                         const float renderCostDecr,
712                                                         const float splitCandidateCost,
713                                                         const float totalRenderCost,
714                                                         const float avgRenderCost);
715
716        ///////////////////////////////////////////////////////////
717
718
719protected:
720       
721        /// Pointer to the root of the tree
722        BspNode *mRoot;
723       
724        /// the pointer to the view cells manager
725        ViewCellsManager *mViewCellsManager;
726       
727        /// View cell corresponding to the space outside the valid view space
728        BspViewCell *mOutOfBoundsCell;
729
730        /// the bsp tree statistics
731        BspTreeStatistics mBspStats;
732
733        /// sorted split candidates used for sweep-heuristics
734        vector<SortableEntry> *mLocalSubdivisionCandidates;
735
736        /// box around the whole view domain
737        AxisAlignedBox3 mBoundingBox;
738
739        /// pointer to the hierarchy of view cells
740        ViewCellsTree *mViewCellsTree;
741
742
743        //-- termination critera
744
745        /// minimal number of rays before subdivision termination
746        int mTermMinRays;
747        /// maximal possible depth
748        int mTermMaxDepth;
749        /// mininum probability
750        float mTermMinProbability;
751        /// mininum PVS
752        int mTermMinPvs;
753        /// maximal contribution per ray
754        float mTermMaxRayContribution;
755        /// minimal accumulated ray length
756        float mTermMinAccRayLength;
757        /// maximal acceptable cost ratio
758        float mTermMaxCostRatio;
759        /// tolerance value indicating how often the max cost ratio can be failed
760        int mTermMissTolerance;
761
762
763        //-- termination criteria for
764        //-- hybrid stategy where only axis aligned split are used until
765        //-- a certain point and then also polygon aligned split are taken
766         
767        /// minimal number of rays where axis aligned split is taken
768        int mTermMinRaysForAxisAligned;
769        /// max ray contribution
770        float mTermMaxRayContriForAxisAligned;
771        /// weight for heuristics evaluation
772        float mAxisAlignedCtDivCi;
773        /// spezifies the split border of the axis aligned split
774        float mAxisAlignedSplitBorder;
775
776        ///////////
777        //-- global terminatino criteria
778        float mTermMinGlobalCostRatio;
779        int mTermGlobalCostMissTolerance;
780       
781        /// maximal number of view cells
782        int mMaxViewCells;
783        /// maximal tree memory
784        float mMaxMemory;
785        /// the tree is out of memory
786        bool mOutOfMemory;
787
788
789        /// number of candidates evaluated for the next split plane
790        int mMaxPolyCandidates;
791        /// number of candidates for split planes evaluated using the rays
792        int mMaxRayCandidates;
793       
794
795        //////////
796        //-- axis aligned split criteria
797
798        /// if only driving axis should be used for choosing the axis-aligned split
799        bool mOnlyDrivingAxis;
800        /// if heuristics should be used to place the split plane of an axis-aligned split
801        bool mUseCostHeuristics;
802        /// if driving axis should taken if max cost is exceeded for
803        /// all evaluated axis aligned split plane candidates
804        bool mUseDrivingAxisIfMaxCostViolated;
805        /// minimal relative position where the split axis can be placed
806        float mMinBand;
807        /// maximal relative position where the split axis can be placed
808        float mMaxBand;
809        /// balancing factor for PVS criterium
810        float mCtDivCi;
811        /// if random split axis should be used
812        bool mUseRandomAxis;
813        /// if vsp bsp tree should simulate octree
814        bool mCirculatingAxis;
815
816
817       
818        /// priority queue strategy
819        enum {BREATH_FIRST, DEPTH_FIRST, COST_BASED};
820        /// if we should use breath first priority for the splits
821        int mNodePriorityQueueType;
822        /// if split cost queue should be used to compute next best split
823        bool mUseSplitCostQueue;
824       
825
826       
827        /// Strategies for choosing next split plane.
828        enum {NO_STRATEGY = 0,
829                  RANDOM_POLYGON = 1,
830                  AXIS_ALIGNED = 2,
831                  LEAST_RAY_SPLITS = 256,
832                  BALANCED_RAYS = 512,
833                  PVS = 1024
834                };
835
836        /// strategy to get the best split plane
837        int mSplitPlaneStrategy;
838
839        //-- factors guiding the split plane heuristics
840
841        float mLeastRaySplitsFactor;
842        float mBalancedRaysFactor;
843        float mPvsFactor;
844
845
846        /// if area or volume should be used for PVS heuristics
847        bool mUseAreaForPvs;
848        /// tolerance for polygon split
849        float mEpsilon;
850        /// maximal number of test rays used to evaluate candidate split plane
851        int mMaxTests;
852        /// normalizes different bsp split plane criteria
853        float mCostNormalizer;
854        // if rays should be stored in leaves
855        bool mStoreRays;
856        /// weight between  render cost (expected value) and variance
857        float mRenderCostWeight;
858        /// weight between  render cost decrease and node render cost
859        float mRenderCostDecreaseWeight;
860
861        //-- subdivision statistics
862
863        /// subdivision stats output file
864        ofstream mSubdivisionStats;
865        float mTotalCost;
866        int mTotalPvsSize;
867
868
869        /// use polygon split whenever there are polys left
870        bool mUsePolygonSplitIfAvailable;
871        /// current time stamp (used for keeping split history)
872        int mTimeStamp;
873        /// number of currenly generated view cells
874        int mCreatedViewCells;
875
876
877private:
878
879        /// Generates unique ids for PVS criterium
880        static void GenerateUniqueIdsForPvs();
881
882        //-- unique ids for PVS criterium
883        static int sFrontId;
884        static int sBackId;
885        static int sFrontAndBackId;
886};
887
888}
889
890
891#endif
Note: See TracBrowser for help on using the repository browser.