1 | // ============================================================================ |
---|
2 | // $Id: $ |
---|
3 | // |
---|
4 | // ktbai.h |
---|
5 | // classes for building up the different KD-trees |
---|
6 | // |
---|
7 | // Class: CKTBBuildUp, CKTBBuildUp_new |
---|
8 | // |
---|
9 | // REPLACEMENT_STRING |
---|
10 | // |
---|
11 | // Initial coding by Vlasta Havran, February 2007 |
---|
12 | |
---|
13 | #ifndef __KTBAI_H__ |
---|
14 | #define __KTBAI_H__ |
---|
15 | |
---|
16 | // GOLEM headers |
---|
17 | #include "configh.h" |
---|
18 | #include "ktbconf.h" |
---|
19 | #include "ktb.h" |
---|
20 | #include "ktb8b.h" |
---|
21 | #include "Containers.h" |
---|
22 | |
---|
23 | namespace GtpVisibilityPreprocessor { |
---|
24 | |
---|
25 | // forward declarations |
---|
26 | class SKTBNode; |
---|
27 | |
---|
28 | #ifndef _KTB8Bytes |
---|
29 | // Use 12 Bytes representation |
---|
30 | #define CKTBAllocManPredecessor CKTBAllocMan |
---|
31 | #undef SKTBNodeT |
---|
32 | #define SKTBNodeT CKTBNodeAbstract::SKTBNode |
---|
33 | #else |
---|
34 | // Use 8 Bytes representation per node |
---|
35 | #define CKTBAllocManPredecessor CKTB8BAllocMan |
---|
36 | #undef SKTBNodeT |
---|
37 | #define SKTBNodeT CKTB8BNodeAbstract::SKTBNode |
---|
38 | #endif |
---|
39 | |
---|
40 | #ifndef INFINITY |
---|
41 | #define INFINITY 10e10 |
---|
42 | #endif |
---|
43 | |
---|
44 | // The base class for KD-tree with irregular change of axes, where |
---|
45 | // the splitting plane can be positioned. |
---|
46 | class CKTBABuildUp: |
---|
47 | public CKTBAllocManPredecessor |
---|
48 | { |
---|
49 | public: |
---|
50 | // The definition of flags |
---|
51 | enum EBoundaryType { |
---|
52 | EE_LeftBoundary = 1, |
---|
53 | EE_InLeftList = 1, |
---|
54 | EE_RightBoundary = 2, |
---|
55 | EE_InRightList = 2, |
---|
56 | EE_BothBoundaries = 3, |
---|
57 | EE_ToBeRemoved = 4 |
---|
58 | }; |
---|
59 | |
---|
60 | // the item in the list for all objects |
---|
61 | struct SSolid |
---|
62 | { |
---|
63 | Intersectable *obj; // pointer to the object itself |
---|
64 | unsigned int flags; // the flags to be set, they are common for all boundaries |
---|
65 | |
---|
66 | // query functions |
---|
67 | inline bool InFirstList() const { return (flags & EE_InLeftList); } |
---|
68 | inline bool InSecondList() const { return (flags & EE_InRightList); } |
---|
69 | inline bool InBothLists() const { return (flags == EE_BothBoundaries); } |
---|
70 | inline bool ToBeRemoved() const { return (flags & EE_ToBeRemoved); } |
---|
71 | inline bool ToBeRemovedOnly() const { return (flags == EE_ToBeRemoved); } |
---|
72 | inline unsigned int Flags() const { return flags;} |
---|
73 | // Setting functions |
---|
74 | inline void SetInFirstList() { flags |= 1; } |
---|
75 | inline void SetInSecondList() { flags |= 2; } |
---|
76 | inline void SetToRemove() { flags |= 4; } |
---|
77 | inline void SetToRemoveOnly() { flags = 4; } |
---|
78 | |
---|
79 | inline void ResetFlags() { flags = 0;} |
---|
80 | SSolid() { ResetFlags(); } |
---|
81 | }; |
---|
82 | |
---|
83 | // The container of the object entries |
---|
84 | typedef vector<SSolid> SSolidVec; |
---|
85 | |
---|
86 | // the array of all objects in the scene |
---|
87 | SSolidVec solidArray; |
---|
88 | |
---|
89 | // the item of the boundary list - either left or right boundary |
---|
90 | // of the axis-aligned bounding box of the object. This structure |
---|
91 | // is intentionally of small size, namely 12 or 16 Bytes. |
---|
92 | |
---|
93 | struct SItem |
---|
94 | { |
---|
95 | float pos; // boundary values for all three axes |
---|
96 | struct SSolid *obj; // the pointer to the object with flags |
---|
97 | |
---|
98 | // The axis represented by the item (CKTBAxes::Axes) |
---|
99 | uint1 axis; // = (X=0, Y=1, Z=2) |
---|
100 | // the type of boundary (low, high) |
---|
101 | uint1 typeLoHi; |
---|
102 | // only allignment to 12 Bytes |
---|
103 | //uint2 dummy; |
---|
104 | // ------------------------------------------------- |
---|
105 | // some basic functions |
---|
106 | SItem(float posN, SSolid *objN, int axisN, EBoundaryType LoHiN) { |
---|
107 | pos = posN; obj = objN; axis = axisN; typeLoHi = (uint1)LoHiN; |
---|
108 | } |
---|
109 | // Simply constructor, just initializing flags |
---|
110 | SItem() {obj = 0; axis = 255; typeLoHi = 0; } |
---|
111 | //SItem& operator=(const SItem &src) { |
---|
112 | // this->pos = src.pos; this->obj = src.obj; |
---|
113 | // this->axis = src.axis; this->typeLoHi = src.typeLoHi; |
---|
114 | // return *this; |
---|
115 | // } |
---|
116 | |
---|
117 | // Simple query functions |
---|
118 | inline bool IsLeftBoundary() const { |
---|
119 | return (typeLoHi == EE_LeftBoundary); |
---|
120 | } |
---|
121 | inline bool IsRightBoundary() const { |
---|
122 | return (typeLoHi == EE_RightBoundary); |
---|
123 | } |
---|
124 | // Simple set functions |
---|
125 | void SetLeftBoundary() { typeLoHi = EE_LeftBoundary; } |
---|
126 | void SetRightBoundary() { typeLoHi = EE_RightBoundary; } |
---|
127 | // For quicksort |
---|
128 | friend bool operator<(const SItem &a, const SItem &b) { |
---|
129 | if (a.pos < b.pos) |
---|
130 | return -1; |
---|
131 | else |
---|
132 | if (a.pos > b.pos) |
---|
133 | return 1; |
---|
134 | else |
---|
135 | // the coordinates are equal |
---|
136 | if ( (a.IsRightBoundary()) && |
---|
137 | (b.IsLeftBoundary()) ) |
---|
138 | return -1; // right_boundary < left_boundary |
---|
139 | else |
---|
140 | if ( (a.IsLeftBoundary()) && |
---|
141 | (b.IsRightBoundary()) ) |
---|
142 | return 1; // left_boundary > right_boundary |
---|
143 | // coordinates are equal, the same value and type, order is correct |
---|
144 | return 0; |
---|
145 | } |
---|
146 | }; |
---|
147 | |
---|
148 | // Here is the extended element for RadixSort |
---|
149 | struct SItemRadix: |
---|
150 | public SItem |
---|
151 | { |
---|
152 | // the pointer needed to chain the data during sorting |
---|
153 | SItemRadix *next; |
---|
154 | // Basic operations |
---|
155 | SItemRadix(): SItem() { next = 0;} |
---|
156 | // This is necessary constructor |
---|
157 | SItemRadix(const SItem &it) { |
---|
158 | memcpy(this, &it, sizeof(SItem)); |
---|
159 | next = 0; |
---|
160 | } |
---|
161 | // This is necessary copy operator |
---|
162 | SItemRadix& operator=(const SItem &it) { |
---|
163 | memcpy(this, &it, sizeof(SItem)); |
---|
164 | next = 0; |
---|
165 | return *this; |
---|
166 | } |
---|
167 | }; |
---|
168 | |
---|
169 | |
---|
170 | // --------------------------------------------------------- |
---|
171 | // The declaration of container with object boundaries |
---|
172 | typedef vector<SItem> SItemVec; |
---|
173 | typedef vector<SItemRadix> SItemVecRadix; |
---|
174 | |
---|
175 | // --------------------------------------------------------- |
---|
176 | // Sorting by QuickSort and RadixSort |
---|
177 | |
---|
178 | // QuickSort |
---|
179 | // compare function for SItem* |
---|
180 | static int Compare(const SItem *p, const SItem *q); |
---|
181 | // bounding box sorting by Quick Sort |
---|
182 | void SortOneAxis(SItemVec &itemvec, int cnt, int * const stackQuickSort); |
---|
183 | |
---|
184 | // ------------------------------------- |
---|
185 | // For Radix Sort |
---|
186 | // Radix sort int 2^8=256 classes and three |
---|
187 | // passes .. 4x8 bits=32 bits |
---|
188 | bool _useRadixSort; |
---|
189 | enum { RXBITS30 = 11 }; // the number of bits used for one phase of Radix Sort |
---|
190 | enum { // the number of buckets for RadixSort |
---|
191 | RXBUFS30 = 1 << RXBITS30, |
---|
192 | RXBUFS30_2 = 1 << (RXBITS30-1)}; |
---|
193 | // This is one bucket of radix soft |
---|
194 | struct SRadix { |
---|
195 | SItemRadix *beg, *end; |
---|
196 | }; |
---|
197 | // for 3-passes radix sort over the vectored data |
---|
198 | void CopyToAuxArray(const SItemVec &bounds, SItemVecRadix &aux); |
---|
199 | void RadixPassHoffset11(SItemVecRadix &bounds, int bit, SRadix *rb, |
---|
200 | float offset, SItemRadix **start); |
---|
201 | void RadixPass11(SItemRadix **start, int cnt, int bit, SRadix *rb); |
---|
202 | void RadixPassOffset10(SItemRadix **start, int cnt, int bit, SRadix *rb, |
---|
203 | float offset); |
---|
204 | void CopyFromAuxArray(SItemRadix *aux, SItemVec &bounds); |
---|
205 | |
---|
206 | // forward declaration |
---|
207 | struct SInputData; |
---|
208 | // sorts all three axes, cnt is the number of elems |
---|
209 | void SortAxes(SInputData *data); |
---|
210 | // initialization of the bounding box for a given object |
---|
211 | void LoadBB(SBBox &bb, SSolid *obj); |
---|
212 | |
---|
213 | // test if the lists are correctly sorted |
---|
214 | void Check3List(SInputData *data); |
---|
215 | void Check1List(SItemVec *vec, int axis, int countExpected); |
---|
216 | void Check1List(SInputData *data, int axis, int countExpected); |
---|
217 | |
---|
218 | //---------------------------------------------------------------------- |
---|
219 | // Termination criteria and fixing the splitting plane orientation |
---|
220 | |
---|
221 | // structure for prefered and required params for evaluation functions |
---|
222 | // and the termination criteria |
---|
223 | struct SReqPrefParams |
---|
224 | { |
---|
225 | //if any position on required axis is preferred for next subdivision step |
---|
226 | float reqPosition; // then reqPosition>0 |
---|
227 | // if any axis is prefered for next step |
---|
228 | bool useReqAxis; |
---|
229 | // the prescribed axis for the next subdivision |
---|
230 | CKTBAxes::Axes reqAxis; |
---|
231 | |
---|
232 | // -------------- AUTOMATIC TERMINATION CRITERIA --------------------- |
---|
233 | // the ratio of improvement for the cost by subdivision and not-subdividing |
---|
234 | // for the previous subdivision |
---|
235 | float ratioLast; |
---|
236 | // the ratio of improvement for the subdivision in the previous step |
---|
237 | float ratioLastButOne; |
---|
238 | // the number of subdivision from the root node, where the improvement |
---|
239 | // in the cost failed |
---|
240 | int failedSubDivCount; |
---|
241 | void Init() { |
---|
242 | reqPosition = Limits::Infinity; |
---|
243 | useReqAxis = false; |
---|
244 | reqAxis = CKTBAxes::EE_Leaf; |
---|
245 | |
---|
246 | ratioLast = 1000.0; |
---|
247 | ratioLastButOne = 1000.0; |
---|
248 | failedSubDivCount = 0; |
---|
249 | } |
---|
250 | }; |
---|
251 | |
---|
252 | // initialize required and preferenced parameters before first subdivision |
---|
253 | void InitReqPref(SReqPrefParams *pars); |
---|
254 | |
---|
255 | // ------------------------------------------------------ |
---|
256 | // A structure for a single step of subdivision |
---|
257 | struct SInputData { |
---|
258 | // the traversal bounding box of the scene (not necessarily tight) |
---|
259 | SBBox box; |
---|
260 | // the number of objects in the node (= number_of_boundaries/2) |
---|
261 | int count; |
---|
262 | // the number of reserved boundaries in the node (>=2*count) |
---|
263 | int cntReserved; |
---|
264 | |
---|
265 | // The list of x-boundaries, y-boundaries, z-boundaries |
---|
266 | SItemVec *xvec; |
---|
267 | SItemVec *yvec; |
---|
268 | SItemVec *zvec; |
---|
269 | |
---|
270 | // only for allignment, it can be used for different purpose |
---|
271 | int algorithmBreakAx; |
---|
272 | |
---|
273 | // ---------------------------- |
---|
274 | // The mode of subdivision |
---|
275 | ESubdivMode modeSubDiv; |
---|
276 | |
---|
277 | // Some prescribed parameters to be used |
---|
278 | SReqPrefParams pars; |
---|
279 | |
---|
280 | // ---------------------------------- |
---|
281 | // Axis to be used if prescribed |
---|
282 | CKTBAxes::Axes axis; |
---|
283 | // the position to be used for MakeOneCut |
---|
284 | float position; |
---|
285 | float position2; |
---|
286 | // the number of objects to be duplicated |
---|
287 | int cntThickness; |
---|
288 | // the iterator to be used for splitting |
---|
289 | SItemVec::iterator bestIterator; |
---|
290 | // if 1 or 2 splits |
---|
291 | int twoSplits; |
---|
292 | // the best cost |
---|
293 | float bestCost; |
---|
294 | |
---|
295 | // if to make subdivision on the left node |
---|
296 | int makeSubdivisionLeft; |
---|
297 | // if to make subdivision on the right node |
---|
298 | int makeSubdivisionRight; |
---|
299 | |
---|
300 | // ----------------------------------- |
---|
301 | // When the min boxes was inserted as the first one |
---|
302 | int lastDepthForMinBoxes; |
---|
303 | // The surface area for the last minimum box inserted |
---|
304 | float lastMinBoxSA2; |
---|
305 | // The pointer to the last inserted minimum box |
---|
306 | SKTBNodeT* lastMinBoxNode; |
---|
307 | private: |
---|
308 | void Init() { |
---|
309 | box.Initialize(); |
---|
310 | algorithmBreakAx = 0; |
---|
311 | count = 0; cntReserved = 0; |
---|
312 | xvec = yvec = zvec = 0; |
---|
313 | pars.Init(); |
---|
314 | cntThickness = 0; |
---|
315 | makeSubdivisionLeft = makeSubdivisionRight = 1; |
---|
316 | lastDepthForMinBoxes = 0; |
---|
317 | lastMinBoxSA2 = INFINITY; |
---|
318 | lastMinBoxNode = 0; |
---|
319 | } |
---|
320 | public: |
---|
321 | |
---|
322 | // ----------------------------------- |
---|
323 | // Implicit constructor |
---|
324 | SInputData() { |
---|
325 | Init(); |
---|
326 | } |
---|
327 | ~SInputData() { |
---|
328 | Free(); |
---|
329 | } |
---|
330 | |
---|
331 | // Allocate at least for one object |
---|
332 | void Alloc(int sizeN = 2) { |
---|
333 | if (!xvec) |
---|
334 | xvec = new GALIGN16 vector<SItem>; |
---|
335 | assert(xvec); |
---|
336 | if (!yvec) |
---|
337 | yvec = new GALIGN16 vector<SItem>; |
---|
338 | assert(yvec); |
---|
339 | if (!zvec) |
---|
340 | zvec = new GALIGN16 vector<SItem>; |
---|
341 | assert(zvec); |
---|
342 | cntReserved = sizeN; |
---|
343 | // cout << "SizeN = " << sizeN << endl; |
---|
344 | xvec->reserve(sizeN); xvec->resize(0); |
---|
345 | yvec->reserve(sizeN); yvec->resize(0); |
---|
346 | zvec->reserve(sizeN); zvec->resize(0); |
---|
347 | count = 0; |
---|
348 | } // Alloc |
---|
349 | void Free() { |
---|
350 | delete xvec; xvec = 0; |
---|
351 | delete yvec; yvec = 0; |
---|
352 | delete zvec; zvec = 0; |
---|
353 | count = cntReserved = 0; |
---|
354 | } // Free |
---|
355 | void Reserve(int sizeN) { |
---|
356 | assert(xvec); |
---|
357 | assert(yvec); |
---|
358 | assert(zvec); |
---|
359 | if (sizeN > cntReserved) { |
---|
360 | xvec->reserve(sizeN); |
---|
361 | yvec->reserve(sizeN); |
---|
362 | zvec->reserve(sizeN); |
---|
363 | cntReserved = sizeN; |
---|
364 | } |
---|
365 | } // Reserve |
---|
366 | void Resize(int sizeN) { |
---|
367 | assert(sizeN >= 0); |
---|
368 | assert(xvec); |
---|
369 | assert(yvec); |
---|
370 | assert(zvec); |
---|
371 | xvec->resize(sizeN); |
---|
372 | yvec->resize(sizeN); |
---|
373 | zvec->resize(sizeN); |
---|
374 | count = sizeN*2; |
---|
375 | } // Reserve |
---|
376 | |
---|
377 | // Return the item using the index |
---|
378 | SItemVec* GetItemVec(int i) { |
---|
379 | assert((i >= 0) && (i < 3)); |
---|
380 | return (&xvec)[i]; |
---|
381 | } |
---|
382 | void CopyBasicData(SInputData *d) { |
---|
383 | box = d->box; |
---|
384 | count = 0; |
---|
385 | algorithmBreakAx = d->algorithmBreakAx; |
---|
386 | modeSubDiv = d->modeSubDiv; |
---|
387 | pars = d->pars; |
---|
388 | axis = d->axis; |
---|
389 | position = d->position; |
---|
390 | // added 12/2007 VH |
---|
391 | position2 = d->position2; |
---|
392 | cntThickness = d->cntThickness; |
---|
393 | // |
---|
394 | makeSubdivisionLeft = d->makeSubdivisionLeft; |
---|
395 | makeSubdivisionRight = d->makeSubdivisionRight; |
---|
396 | // Intentionally, do not copy vectors of items |
---|
397 | lastDepthForMinBoxes = d->lastDepthForMinBoxes; |
---|
398 | lastMinBoxSA2 = d->lastMinBoxSA2; |
---|
399 | lastMinBoxNode = d->lastMinBoxNode; |
---|
400 | } |
---|
401 | }; |
---|
402 | |
---|
403 | // Stack of data to be used |
---|
404 | SInputData *stackID; |
---|
405 | // current index |
---|
406 | int stackIndex; |
---|
407 | // the maximum depth of tree |
---|
408 | int maxTreeDepth; |
---|
409 | // the depth of the stack |
---|
410 | int stackDepth; |
---|
411 | // Return the new data to be used |
---|
412 | SInputData* AllocNewData() { |
---|
413 | int i = stackIndex; |
---|
414 | stackIndex++; |
---|
415 | return &(stackID[i]); |
---|
416 | } |
---|
417 | SInputData* AllocNewData(int cnt) { |
---|
418 | int i = stackIndex; |
---|
419 | stackID[i].Alloc(cnt); |
---|
420 | stackIndex++; |
---|
421 | return &(stackID[i]); |
---|
422 | } |
---|
423 | // Free the last data allocated |
---|
424 | void FreeLastData() { stackIndex--; } |
---|
425 | |
---|
426 | // --------------------------------------------------------------------- |
---|
427 | // upper-level function for building up CKTB tree |
---|
428 | |
---|
429 | // creates all the auxiliary structures for building up CKTB tree |
---|
430 | SInputData* Init(ObjectContainer *objlist, const AxisAlignedBox3 &box); |
---|
431 | |
---|
432 | void DeleteAuxiliaryData() { |
---|
433 | for (int i = 0; i < stackDepth; i++) { |
---|
434 | stackID[i].Free(); |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | // --------------------------------------------------------------------- |
---|
439 | // Working with boundaries of objects |
---|
440 | |
---|
441 | // make the full leaf from current node |
---|
442 | SKTBNodeT* MakeLeaf(SInputData *i); |
---|
443 | |
---|
444 | // breaks the list into two list for a given axis and value |
---|
445 | void BreakAx(SInputData *i, int axis, |
---|
446 | SInputData *right, |
---|
447 | int &cntL, int &cntR); |
---|
448 | // breaks the list into two list for a given axis and value |
---|
449 | void BreakAxPosition(SInputData *i, int axis, |
---|
450 | SInputData *right, |
---|
451 | int &cntL, int &cntR); |
---|
452 | |
---|
453 | // split the list in the other than splitting axis into two lists |
---|
454 | void DivideAx_I(SInputData *i, int axis, |
---|
455 | SInputData *right, |
---|
456 | int &cntL, int &cntR); |
---|
457 | // also split and set the boundaries to be only in the first list |
---|
458 | void DivideAx_II(SInputData *i, int axis, |
---|
459 | SInputData *right, |
---|
460 | int &cntL, int &cntR); |
---|
461 | // split the list in the other than splitting axis into two lists |
---|
462 | void DivideAx_I_opt(SInputData *i, int axis, |
---|
463 | SInputData *right, |
---|
464 | int cntL, int cntR); |
---|
465 | // also split and set the boundaries to be only in the first list |
---|
466 | void DivideAx_II_opt(SInputData *i, int axis, |
---|
467 | SInputData *right, |
---|
468 | int cntL, int cntR); |
---|
469 | // reduce bounding boxes of objects split by the splitting plane |
---|
470 | void ReduceBBoxes(SInputData *i, int axis, |
---|
471 | SInputData *right, |
---|
472 | const float &position); |
---|
473 | // Remove the objects from the containter |
---|
474 | void RemoveObjects(SItemVec *, int cntObjects); |
---|
475 | void RemoveObjectsReset(SItemVec *, int cntObjects); |
---|
476 | |
---|
477 | // Computes the tight bounding box and the number of changed planes |
---|
478 | // when the tight box is used |
---|
479 | int GetEBox(const SInputData &i, SBBox &tbox); |
---|
480 | |
---|
481 | // returns a box enclosing all the objects in the node |
---|
482 | void GetTightBox(const SInputData &i, SBBox &tbox); |
---|
483 | |
---|
484 | // creates one cut inside CKTB tree |
---|
485 | SKTBNodeT* MakeOneCut(SInputData *i); |
---|
486 | // recursive function for creation of CKTB tree |
---|
487 | SKTBNodeT* SubDiv(SInputData *i); |
---|
488 | |
---|
489 | // ------ Methods for building up CKTB tree ------------------ |
---|
490 | // returns 1 to supress to call the following criteria |
---|
491 | struct SSplitState |
---|
492 | { |
---|
493 | // counts |
---|
494 | int cntAll; // the number of all objects in the bounding box |
---|
495 | int cntLeft; // the count of bounding boxes on the left |
---|
496 | int cntRight; // the count of bounding boxes on the right |
---|
497 | int thickness; // the count of bounding boxes straddling the splitting plane |
---|
498 | |
---|
499 | CKTBAxes::Axes axis; // the axis, where the splitting is proposed |
---|
500 | float sizeb[3]; // the size of the box for x, y, and z |
---|
501 | SBBox box; // the box, that is subdivided |
---|
502 | |
---|
503 | // derived values from basic ones |
---|
504 | float width; // the size of bounding box along the axis |
---|
505 | float frontw; // the size of the bounding box in another axis (depth) |
---|
506 | float topw; // the size of the bounding box in next next axis (height) |
---|
507 | float areaSplitPlane; // the area of the splitting plane |
---|
508 | float areaSumLength; // the size of the bounding as sum of height and depth |
---|
509 | float areaWholeSA2; // the half of the surface area of the whole box for this node |
---|
510 | |
---|
511 | // The iterator valid for current position |
---|
512 | SItemVec::iterator it; |
---|
513 | // The position for this splitting plane to be evaluated |
---|
514 | float position; // the distance from the left boundary of the box for this node |
---|
515 | // The position for the next position, makes sense only for free interval (thickness=0) |
---|
516 | float position2; // the distance from the left boundary of the box for this node |
---|
517 | |
---|
518 | // The evaluation best cost until now |
---|
519 | float bestCost; |
---|
520 | // The position to be used |
---|
521 | SItemVec::iterator bestIterator; |
---|
522 | // The number of objects stradling the spliting plane for best position |
---|
523 | int bestThickness; |
---|
524 | // Which mechanism to be used for splitting, either 0,1, or 2 splitting planes |
---|
525 | int bestTwoSplits; |
---|
526 | |
---|
527 | // setting the evaluation for split cases that must not be done |
---|
528 | float WorstEvaluation() const { return MAXFLOAT;} |
---|
529 | |
---|
530 | // The initialization for the first axis to be tested. |
---|
531 | void InitXaxis(int cnt, const SBBox &box); |
---|
532 | void InitYaxis(int cnt, const SBBox &box); |
---|
533 | void InitZaxis(int cnt, const SBBox &box); |
---|
534 | // This function can be called only if InitXaxis was called before |
---|
535 | void ReinitYaxis(int cnt, const SBBox &box); |
---|
536 | // This function can be called only if InitXaxis was called, and subsequently |
---|
537 | // the function ReinitYaxis was called. |
---|
538 | void ReinitZaxis(int cnt, const SBBox &box); |
---|
539 | // Normalize the best cost by surface area of the box |
---|
540 | void NormalizeCostBySA2() { bestCost /= areaWholeSA2;} |
---|
541 | }; |
---|
542 | |
---|
543 | // splitting state for current search |
---|
544 | SSplitState state; |
---|
545 | |
---|
546 | // Evaluating the cost, given the state and the values of splitting |
---|
547 | void EvaluateCost(SSplitState &state); |
---|
548 | |
---|
549 | // Evaluating the cost, given the state and the values of splitting |
---|
550 | // for free cuts |
---|
551 | void EvaluateCostFreeCut(SSplitState &state); |
---|
552 | |
---|
553 | // ----- statistical data --------- |
---|
554 | int cntDuplicate; // count of duplicated objects until now |
---|
555 | bool resetFlagsForBreakAx; |
---|
556 | |
---|
557 | // ------ debugging data ---------- |
---|
558 | // if to print out the tree during construction |
---|
559 | bool _printCuts; |
---|
560 | |
---|
561 | protected: |
---|
562 | |
---|
563 | // --------------------------------- |
---|
564 | // The selection of the axis |
---|
565 | int _algorithmForAxisSelection; |
---|
566 | |
---|
567 | // ---- termination criteria ----- |
---|
568 | int algorithmAutoTermination; // the algorithm for automatic termination criteria |
---|
569 | int maxDepthAllowed; // maximal depth of CKTB tree |
---|
570 | int maxListLength; // maximal list length of CKTB tree |
---|
571 | int maxCountTrials; // maximum number of trials for automatic termination criteria |
---|
572 | // the cutting off empty space in leaves |
---|
573 | bool cutEmptySpace; // if to cut off empty space in leaves in postprocessing |
---|
574 | int absMaxAllowedDepth; // maximal depth from the root - mut not be surpassed |
---|
575 | // maximal depth allowed for cutting within the leaf .. cut off empty space |
---|
576 | int maxEmptyCutDepth; // must be <0,1,2,3,4,5,6> since six planes are enough |
---|
577 | // This is working variable, denoting the depth of the leaf to be created. |
---|
578 | int startEmptyCutDepth; |
---|
579 | |
---|
580 | // ---------- Special improvements on the kd-tree construction -------- |
---|
581 | // flag if to split bounding boxes during splitting |
---|
582 | bool splitClip; |
---|
583 | // flag if to put minimum enclosing boxes sparsely during the construction |
---|
584 | bool makeMinBoxes; |
---|
585 | // if we make tight boxes if we put min box ! |
---|
586 | bool makeTightMinBoxes; |
---|
587 | // parameters to drive the minboxes construction |
---|
588 | int minObjectsToCreateMinBox, minDepthDistanceBetweenMinBoxes; |
---|
589 | float minSA2ratioMinBoxes; |
---|
590 | // Biasing the empty cuts (no objects are split). The cost is multiplied |
---|
591 | // by the coefficient which is assumed to be 0.8-0.9 |
---|
592 | float biasFreeCuts; |
---|
593 | // Make min box here |
---|
594 | bool makeMinBoxHere; |
---|
595 | |
---|
596 | // two next axes are stored in oaxes for each axis |
---|
597 | static const CKTBAxes::Axes oaxes[3][2]; |
---|
598 | |
---|
599 | // ------ data to create the tree -------------------- |
---|
600 | int initcnt; // initial number of objects |
---|
601 | SBBox wBbox; // the box of the world in float values |
---|
602 | Vector3 boxSize; // the size of world bounding box in float |
---|
603 | float wholeBoxArea; // the surface area of the scene bounding box |
---|
604 | |
---|
605 | // for some functions it is necessary to have determined the following costs |
---|
606 | float Ct; // traversal cost - going in given direction != decision |
---|
607 | float Ci; // intersection cost - average intersection cost with object |
---|
608 | |
---|
609 | // just if to be verbose |
---|
610 | bool verbose; |
---|
611 | |
---|
612 | // the main function of this class .. returns the best splitting plane |
---|
613 | // in X axis, requires InitXaxis() to be called before or InitYaxis() or InitZaxis() |
---|
614 | // optimized version |
---|
615 | void GetSplitPlaneOpt(SItemVec *vec, int axisToTest); |
---|
616 | void GetSplitPlaneOpt2(SItemVec *vec, int axisToTest); |
---|
617 | void GetSplitPlaneOpt3(SItemVec *vec, int axisToTest); |
---|
618 | void GetSplitPlaneOptUnroll4(SItemVec *vec, int axisToTest); |
---|
619 | public: |
---|
620 | // setting the evaluation for split cases that must not be done |
---|
621 | float WorstEvaluation() const { return MAXFLOAT;} |
---|
622 | |
---|
623 | // update the best value for evaluation |
---|
624 | int UpdateEvaluation(float &eval, const float &newEval); |
---|
625 | |
---|
626 | public: |
---|
627 | // default constructor |
---|
628 | CKTBABuildUp(); |
---|
629 | |
---|
630 | // default destructor |
---|
631 | virtual ~CKTBABuildUp(); |
---|
632 | |
---|
633 | // provide info about construction method |
---|
634 | virtual void ProvideID(ostream &app); |
---|
635 | |
---|
636 | // constructs the KD-tree for given objectlist and given bounding box |
---|
637 | // returns NULL in case of failure, in case of success returns |
---|
638 | // the pointer to the root node of constructed KD-tree. |
---|
639 | virtual SKTBNodeT* BuildUp(ObjectContainer &objlist, |
---|
640 | const AxisAlignedBox3 &box, |
---|
641 | bool verbose = true); |
---|
642 | }; |
---|
643 | |
---|
644 | } |
---|
645 | |
---|
646 | #endif // __KTBAI_H__ |
---|
647 | |
---|