1 | /* Copyright (c) 1998 - 2005, Google Inc.
|
---|
2 | * All rights reserved.
|
---|
3 | *
|
---|
4 | * Redistribution and use in source and binary forms, with or without
|
---|
5 | * modification, are permitted provided that the following conditions are
|
---|
6 | * met:
|
---|
7 | *
|
---|
8 | * * Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * * Redistributions in binary form must reproduce the above
|
---|
11 | * copyright notice, this list of conditions and the following disclaimer
|
---|
12 | * in the documentation and/or other materials provided with the
|
---|
13 | * distribution.
|
---|
14 | * * Neither the name of Google Inc. nor the names of its
|
---|
15 | * contributors may be used to endorse or promote products derived from
|
---|
16 | * this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
29 | *
|
---|
30 | * ---
|
---|
31 | * Author: Craig Silverstein
|
---|
32 | *
|
---|
33 | * This library is intended to be used for in-memory hash tables,
|
---|
34 | * though it provides rudimentary permanent-storage capabilities.
|
---|
35 | * It attempts to be fast, portable, and small. The best algorithm
|
---|
36 | * to fulfill these goals is an internal probing hashing algorithm,
|
---|
37 | * as in Knuth, _Art of Computer Programming_, vol III. Unlike
|
---|
38 | * chained (open) hashing, it doesn't require a pointer for every
|
---|
39 | * item, yet it is still constant time lookup in practice.
|
---|
40 | *
|
---|
41 | * Also to save space, we let the contents (both data and key) that
|
---|
42 | * you insert be a union: if the key/data is small, we store it
|
---|
43 | * directly in the hashtable, otherwise we store a pointer to it.
|
---|
44 | * To keep you from having to figure out which, use KEY_PTR and
|
---|
45 | * PTR_KEY to convert between the arguments to these functions and
|
---|
46 | * a pointer to the real data. For instance:
|
---|
47 | * char key[] = "ab", *key2;
|
---|
48 | * HTItem *bck; HashTable *ht;
|
---|
49 | * HashInsert(ht, PTR_KEY(ht, key), 0);
|
---|
50 | * bck = HashFind(ht, PTR_KEY(ht, "ab"));
|
---|
51 | * key2 = KEY_PTR(ht, bck->key);
|
---|
52 | *
|
---|
53 | * There are a rich set of operations supported:
|
---|
54 | * AllocateHashTable() -- Allocates a hashtable structure and
|
---|
55 | * returns it.
|
---|
56 | * cchKey: if it's a positive number, then each key is a
|
---|
57 | * fixed-length record of that length. If it's 0,
|
---|
58 | * the key is assumed to be a \0-terminated string.
|
---|
59 | * fSaveKey: normally, you are responsible for allocating
|
---|
60 | * space for the key. If this is 1, we make a
|
---|
61 | * copy of the key for you.
|
---|
62 | * ClearHashTable() -- Removes everything from a hashtable
|
---|
63 | * FreeHashTable() -- Frees memory used by a hashtable
|
---|
64 | *
|
---|
65 | * HashFind() -- takes a key (use PTR_KEY) and returns the
|
---|
66 | * HTItem containing that key, or NULL if the
|
---|
67 | * key is not in the hashtable.
|
---|
68 | * HashFindLast() -- returns the item found by last HashFind()
|
---|
69 | * HashFindOrInsert() -- inserts the key/data pair if the key
|
---|
70 | * is not already in the hashtable, or
|
---|
71 | * returns the appropraite HTItem if it is.
|
---|
72 | * HashFindOrInsertItem() -- takes key/data as an HTItem.
|
---|
73 | * HashInsert() -- adds a key/data pair to the hashtable. What
|
---|
74 | * it does if the key is already in the table
|
---|
75 | * depends on the value of SAMEKEY_OVERWRITE.
|
---|
76 | * HashInsertItem() -- takes key/data as an HTItem.
|
---|
77 | * HashDelete() -- removes a key/data pair from the hashtable,
|
---|
78 | * if it's there. RETURNS 1 if it was there,
|
---|
79 | * 0 else.
|
---|
80 | * If you use sparse tables and never delete, the full data
|
---|
81 | * space is available. Otherwise we steal -2 (maybe -3),
|
---|
82 | * so you can't have data fields with those values.
|
---|
83 | * HashDeleteLast() -- deletes the item returned by the last Find().
|
---|
84 | *
|
---|
85 | * HashFirstBucket() -- used to iterate over the buckets in a
|
---|
86 | * hashtable. DON'T INSERT OR DELETE WHILE
|
---|
87 | * ITERATING! You can't nest iterations.
|
---|
88 | * HashNextBucket() -- RETURNS NULL at the end of iterating.
|
---|
89 | *
|
---|
90 | * HashSetDeltaGoalSize() -- if you're going to insert 1000 items
|
---|
91 | * at once, call this fn with arg 1000.
|
---|
92 | * It grows the table more intelligently.
|
---|
93 | *
|
---|
94 | * HashSave() -- saves the hashtable to a file. It saves keys ok,
|
---|
95 | * but it doesn't know how to interpret the data field,
|
---|
96 | * so if the data field is a pointer to some complex
|
---|
97 | * structure, you must send a function that takes a
|
---|
98 | * file pointer and a pointer to the structure, and
|
---|
99 | * write whatever you want to write. It should return
|
---|
100 | * the number of bytes written. If the file is NULL,
|
---|
101 | * it should just return the number of bytes it would
|
---|
102 | * write, without writing anything.
|
---|
103 | * If your data field is just an integer, not a
|
---|
104 | * pointer, just send NULL for the function.
|
---|
105 | * HashLoad() -- loads a hashtable. It needs a function that takes
|
---|
106 | * a file and the size of the structure, and expects
|
---|
107 | * you to read in the structure and return a pointer
|
---|
108 | * to it. You must do memory allocation, etc. If
|
---|
109 | * the data is just a number, send NULL.
|
---|
110 | * HashLoadKeys() -- unlike HashLoad(), doesn't load the data off disk
|
---|
111 | * until needed. This saves memory, but if you look
|
---|
112 | * up the same key a lot, it does a disk access each
|
---|
113 | * time.
|
---|
114 | * You can't do Insert() or Delete() on hashtables that were loaded
|
---|
115 | * from disk.
|
---|
116 | */
|
---|
117 |
|
---|
118 | #include <sys/types.h> /* includes definition of "ulong", we hope */
|
---|
119 | #define ulong u_long
|
---|
120 |
|
---|
121 | #define MAGIC_KEY "CHsh" /* when we save the file */
|
---|
122 |
|
---|
123 | #ifndef LOG_WORD_SIZE /* 5 for 32 bit words, 6 for 64 */
|
---|
124 | #ifdef __alpha /* only way I know of determining */
|
---|
125 | #define LOG_WORD_SIZE 6 /* log_2(sizeof(ulong)) [in bits] */
|
---|
126 | #else
|
---|
127 | #define LOG_WORD_SIZE 5 /* log_2(sizeof(ulong)) [in bits] */
|
---|
128 | #endif
|
---|
129 | #endif
|
---|
130 |
|
---|
131 | /* The following gives a speed/time tradeoff: how many buckets are *
|
---|
132 | * in each bin. 0 gives 32 buckets/bin, which is a good number. */
|
---|
133 | #ifndef LOG_BM_WORDS
|
---|
134 | #define LOG_BM_WORDS 0 /* each group has 2^L_B_W * 32 buckets */
|
---|
135 | #endif
|
---|
136 |
|
---|
137 | /* The following are all parameters that affect performance. */
|
---|
138 | #ifndef JUMP
|
---|
139 | #define JUMP(key, offset) ( ++(offset) ) /* ( 1 ) for linear hashing */
|
---|
140 | #endif
|
---|
141 | #ifndef Table
|
---|
142 | #define Table(x) Sparse##x /* Dense##x for dense tables */
|
---|
143 | #endif
|
---|
144 | #ifndef FAST_DELETE
|
---|
145 | #define FAST_DELETE 0 /* if it's 1, we never shrink the ht */
|
---|
146 | #endif
|
---|
147 | #ifndef SAMEKEY_OVERWRITE
|
---|
148 | #define SAMEKEY_OVERWRITE 1 /* overwrite item with our key on insert? */
|
---|
149 | #endif
|
---|
150 | #ifndef OCCUPANCY_PCT
|
---|
151 | #define OCCUPANCY_PCT 0.5 /* large PCT means smaller and slower */
|
---|
152 | #endif
|
---|
153 | #ifndef MIN_HASH_SIZE
|
---|
154 | #define MIN_HASH_SIZE 512 /* ht size when first created */
|
---|
155 | #endif
|
---|
156 | /* When deleting a bucket, we can't just empty it (future hashes *
|
---|
157 | * may fail); instead we set the data field to DELETED. Thus you *
|
---|
158 | * should set DELETED to a data value you never use. Better yet, *
|
---|
159 | * if you don't need to delete, define INSERT_ONLY. */
|
---|
160 | #ifndef INSERT_ONLY
|
---|
161 | #define DELETED -2UL
|
---|
162 | #define IS_BCK_DELETED(bck) ( (bck) && (bck)->data == DELETED )
|
---|
163 | #define SET_BCK_DELETED(ht, bck) do { (bck)->data = DELETED; \
|
---|
164 | FREE_KEY(ht, (bck)->key); } while ( 0 )
|
---|
165 | #else
|
---|
166 | #define IS_BCK_DELETED(bck) 0
|
---|
167 | #define SET_BCK_DELETED(ht, bck) \
|
---|
168 | do { fprintf(stderr, "Deletion not supported for insert-only hashtable\n");\
|
---|
169 | exit(2); } while ( 0 )
|
---|
170 | #endif
|
---|
171 |
|
---|
172 | /* We need the following only for dense buckets (Dense##x above). *
|
---|
173 | * If you need to, set this to a value you'll never use for data. */
|
---|
174 | #define EMPTY -3UL /* steal more of the bck->data space */
|
---|
175 |
|
---|
176 |
|
---|
177 | /* This is what an item is. Either can be cast to a pointer. */
|
---|
178 | typedef struct {
|
---|
179 | ulong data; /* 4 bytes for data: either a pointer or an integer */
|
---|
180 | ulong key; /* 4 bytes for the key: either a pointer or an int */
|
---|
181 | } HTItem;
|
---|
182 |
|
---|
183 | struct Table(Bin); /* defined in chash.c, I hope */
|
---|
184 | struct Table(Iterator);
|
---|
185 | typedef struct Table(Bin) Table; /* Expands to SparseBin, etc */
|
---|
186 | typedef struct Table(Iterator) TableIterator;
|
---|
187 |
|
---|
188 | /* for STORES_PTR to work ok, cchKey MUST BE DEFINED 1st, cItems 2nd! */
|
---|
189 | typedef struct HashTable {
|
---|
190 | ulong cchKey; /* the length of the key, or if it's \0 terminated */
|
---|
191 | ulong cItems; /* number of items currently in the hashtable */
|
---|
192 | ulong cDeletedItems; /* # of buckets holding DELETE in the hashtable */
|
---|
193 | ulong cBuckets; /* size of the table */
|
---|
194 | Table *table; /* The actual contents of the hashtable */
|
---|
195 | int fSaveKeys; /* 1 if we copy keys locally; 2 if keys in one block */
|
---|
196 | int cDeltaGoalSize; /* # of coming inserts (or deletes, if <0) we expect */
|
---|
197 | HTItem *posLastFind; /* position of last Find() command */
|
---|
198 | TableIterator *iter; /* used in First/NextBucket */
|
---|
199 |
|
---|
200 | FILE *fpData; /* if non-NULL, what item->data points into */
|
---|
201 | char * (*dataRead)(FILE *, int); /* how to load data from disk */
|
---|
202 | HTItem bckData; /* holds data after being loaded from disk */
|
---|
203 | } HashTable;
|
---|
204 |
|
---|
205 | /* Small keys are stored and passed directly, but large keys are
|
---|
206 | * stored and passed as pointers. To make it easier to remember
|
---|
207 | * what to pass, we provide two functions:
|
---|
208 | * PTR_KEY: give it a pointer to your data, and it returns
|
---|
209 | * something appropriate to send to Hash() functions or
|
---|
210 | * be stored in a data field.
|
---|
211 | * KEY_PTR: give it something returned by a Hash() routine, and
|
---|
212 | * it returns a (char *) pointer to the actual data.
|
---|
213 | */
|
---|
214 | #define HashKeySize(ht) ( ((ulong *)(ht))[0] ) /* this is how we inline */
|
---|
215 | #define HashSize(ht) ( ((ulong *)(ht))[1] ) /* ...a la C++ :-) */
|
---|
216 |
|
---|
217 | #define STORES_PTR(ht) ( HashKeySize(ht) == 0 || \
|
---|
218 | HashKeySize(ht) > sizeof(ulong) )
|
---|
219 | #define KEY_PTR(ht, key) ( STORES_PTR(ht) ? (char *)(key) : (char *)&(key) )
|
---|
220 | #ifdef DONT_HAVE_TO_WORRY_ABOUT_BUS_ERRORS
|
---|
221 | #define PTR_KEY(ht, ptr) ( STORES_PTR(ht) ? (ulong)(ptr) : *(ulong *)(ptr) )
|
---|
222 | #else
|
---|
223 | #define PTR_KEY(ht, ptr) ( STORES_PTR(ht) ? (ulong)(ptr) : HTcopy((char *)ptr))
|
---|
224 | #endif
|
---|
225 |
|
---|
226 |
|
---|
227 | /* Function prototypes */
|
---|
228 | unsigned long HTcopy(char *pul); /* for PTR_KEY, not for users */
|
---|
229 |
|
---|
230 | struct HashTable *AllocateHashTable(int cchKey, int fSaveKeys);
|
---|
231 | void ClearHashTable(struct HashTable *ht);
|
---|
232 | void FreeHashTable(struct HashTable *ht);
|
---|
233 |
|
---|
234 | HTItem *HashFind(struct HashTable *ht, ulong key);
|
---|
235 | HTItem *HashFindLast(struct HashTable *ht);
|
---|
236 | HTItem *HashFindOrInsert(struct HashTable *ht, ulong key, ulong dataInsert);
|
---|
237 | HTItem *HashFindOrInsertItem(struct HashTable *ht, HTItem *pItem);
|
---|
238 |
|
---|
239 | HTItem *HashInsert(struct HashTable *ht, ulong key, ulong data);
|
---|
240 | HTItem *HashInsertItem(struct HashTable *ht, HTItem *pItem);
|
---|
241 |
|
---|
242 | int HashDelete(struct HashTable *ht, ulong key);
|
---|
243 | int HashDeleteLast(struct HashTable *ht);
|
---|
244 |
|
---|
245 | HTItem *HashFirstBucket(struct HashTable *ht);
|
---|
246 | HTItem *HashNextBucket(struct HashTable *ht);
|
---|
247 |
|
---|
248 | int HashSetDeltaGoalSize(struct HashTable *ht, int delta);
|
---|
249 |
|
---|
250 | void HashSave(FILE *fp, struct HashTable *ht, int (*write)(FILE *, char *));
|
---|
251 | struct HashTable *HashLoad(FILE *fp, char * (*read)(FILE *, int));
|
---|
252 | struct HashTable *HashLoadKeys(FILE *fp, char * (*read)(FILE *, int));
|
---|