// Copyright 2004 The Trustees of Indiana University. // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Jeremiah Willcock // Douglas Gregor // Andrew Lumsdaine #ifndef BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP #define BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP // Gursoy-Atun graph layout, based on: // "Neighbourhood Preserving Load Balancing: A Self-Organizing Approach" // in EuroPar 2000, p. 234 of LNCS 1900 // http://springerlink.metapress.com/link.asp?id=pcu07ew5rhexp9yt #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace detail { struct over_distance_limit : public std::exception {}; template struct update_position_visitor { typedef typename Topology::point_type Point; PositionMap position_map; NodeDistanceMap node_distance; const Topology& space; Point input_vector; double distance_limit; double learning_constant; double falloff_ratio; typedef boost::on_examine_vertex event_filter; typedef typename graph_traits::vertex_descriptor vertex_descriptor; update_position_visitor(PositionMap position_map, NodeDistanceMap node_distance, const Topology& space, const Point& input_vector, double distance_limit, double learning_constant, double falloff_ratio): position_map(position_map), node_distance(node_distance), space(space), input_vector(input_vector), distance_limit(distance_limit), learning_constant(learning_constant), falloff_ratio(falloff_ratio) {} void operator()(vertex_descriptor v, const Graph&) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::pow; #endif if (get(node_distance, v) > distance_limit) throw over_distance_limit(); Point old_position = get(position_map, v); double distance = get(node_distance, v); double fraction = learning_constant * pow(falloff_ratio, distance * distance); put(position_map, v, space.move_position_toward(old_position, fraction, input_vector)); } }; template struct gursoy_shortest { template static inline void run(const Graph& g, typename graph_traits::vertex_descriptor s, NodeDistanceMap node_distance, UpdatePosition& update_position, EdgeWeightMap weight) { boost::dijkstra_shortest_paths(g, s, weight_map(weight). visitor(boost::make_dijkstra_visitor(std::make_pair( boost::record_distances(node_distance, boost::on_edge_relaxed()), update_position)))); } }; template<> struct gursoy_shortest { template static inline void run(const Graph& g, typename graph_traits::vertex_descriptor s, NodeDistanceMap node_distance, UpdatePosition& update_position, dummy_property_map) { boost::breadth_first_search(g, s, visitor(boost::make_bfs_visitor(std::make_pair( boost::record_distances(node_distance, boost::on_tree_edge()), update_position)))); } }; } // namespace detail template void gursoy_atun_step (const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, Diameter diameter, double learning_constant, VertexIndexMap vertex_index_map, EdgeWeightMap weight) { #ifndef BOOST_NO_STDC_NAMESPACE using std::pow; using std::exp; #endif typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename Topology::point_type point_type; vertex_iterator i, iend; std::vector distance_from_input_vector(num_vertices(graph)); typedef boost::iterator_property_map::iterator, VertexIndexMap, double, double&> DistanceFromInputMap; DistanceFromInputMap distance_from_input(distance_from_input_vector.begin(), vertex_index_map); std::vector node_distance_map_vector(num_vertices(graph)); typedef boost::iterator_property_map::iterator, VertexIndexMap, double, double&> NodeDistanceMap; NodeDistanceMap node_distance(node_distance_map_vector.begin(), vertex_index_map); point_type input_vector = space.random_point(); vertex_descriptor min_distance_loc = graph_traits::null_vertex(); double min_distance = 0.0; bool min_distance_unset = true; for (boost::tie(i, iend) = vertices(graph); i != iend; ++i) { double this_distance = space.distance(get(position, *i), input_vector); put(distance_from_input, *i, this_distance); if (min_distance_unset || this_distance < min_distance) { min_distance = this_distance; min_distance_loc = *i; } min_distance_unset = false; } assert (!min_distance_unset); // Graph must have at least one vertex boost::detail::update_position_visitor< PositionMap, NodeDistanceMap, Topology, VertexListAndIncidenceGraph> update_position(position, node_distance, space, input_vector, diameter, learning_constant, exp(-1. / (2 * diameter * diameter))); std::fill(node_distance_map_vector.begin(), node_distance_map_vector.end(), 0); try { typedef detail::gursoy_shortest shortest; shortest::run(graph, min_distance_loc, node_distance, update_position, weight); } catch (detail::over_distance_limit) { /* Thrown to break out of BFS or Dijkstra early */ } } template void gursoy_atun_refine(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, int nsteps, double diameter_initial, double diameter_final, double learning_constant_initial, double learning_constant_final, VertexIndexMap vertex_index_map, EdgeWeightMap weight) { #ifndef BOOST_NO_STDC_NAMESPACE using std::pow; using std::exp; #endif typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename Topology::point_type point_type; vertex_iterator i, iend; double diameter_ratio = (double)diameter_final / diameter_initial; double learning_constant_ratio = learning_constant_final / learning_constant_initial; std::vector distance_from_input_vector(num_vertices(graph)); typedef boost::iterator_property_map::iterator, VertexIndexMap, double, double&> DistanceFromInputMap; DistanceFromInputMap distance_from_input(distance_from_input_vector.begin(), vertex_index_map); std::vector node_distance_map_vector(num_vertices(graph)); typedef boost::iterator_property_map::iterator, VertexIndexMap, double, double&> NodeDistanceMap; NodeDistanceMap node_distance(node_distance_map_vector.begin(), vertex_index_map); for (int round = 0; round < nsteps; ++round) { double part_done = (double)round / (nsteps - 1); int diameter = (int)(diameter_initial * pow(diameter_ratio, part_done)); double learning_constant = learning_constant_initial * pow(learning_constant_ratio, part_done); gursoy_atun_step(graph, space, position, diameter, learning_constant, vertex_index_map, weight); } } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, int nsteps, double diameter_initial, double diameter_final, double learning_constant_initial, double learning_constant_final, VertexIndexMap vertex_index_map, EdgeWeightMap weight) { typedef typename graph_traits::vertex_iterator vertex_iterator; vertex_iterator i, iend; for (boost::tie(i, iend) = vertices(graph); i != iend; ++i) { put(position, *i, space.random_point()); } gursoy_atun_refine(graph, space, position, nsteps, diameter_initial, diameter_final, learning_constant_initial, learning_constant_final, vertex_index_map, weight); } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, int nsteps, double diameter_initial, double diameter_final, double learning_constant_initial, double learning_constant_final, VertexIndexMap vertex_index_map) { gursoy_atun_layout(graph, space, position, nsteps, diameter_initial, diameter_final, learning_constant_initial, learning_constant_final, vertex_index_map, dummy_property_map()); } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, int nsteps, double diameter_initial, double diameter_final = 1.0, double learning_constant_initial = 0.8, double learning_constant_final = 0.2) { gursoy_atun_layout(graph, space, position, nsteps, diameter_initial, diameter_final, learning_constant_initial, learning_constant_final, get(vertex_index, graph)); } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, int nsteps) { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif gursoy_atun_layout(graph, space, position, nsteps, sqrt((double)num_vertices(graph))); } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position) { gursoy_atun_layout(graph, space, position, num_vertices(graph)); } template void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph, const Topology& space, PositionMap position, const bgl_named_params& params) { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif std::pair diam(sqrt(double(num_vertices(graph))), 1.0); std::pair learn(0.8, 0.2); gursoy_atun_layout(graph, space, position, choose_param(get_param(params, iterations_t()), num_vertices(graph)), choose_param(get_param(params, diameter_range_t()), diam).first, choose_param(get_param(params, diameter_range_t()), diam).second, choose_param(get_param(params, learning_constant_range_t()), learn).first, choose_param(get_param(params, learning_constant_range_t()), learn).second, choose_const_pmap(get_param(params, vertex_index), graph, vertex_index), choose_param(get_param(params, edge_weight), dummy_property_map())); } /*********************************************************** * Topologies * ***********************************************************/ template class convex_topology { struct point { point() { } double& operator[](std::size_t i) {return values[i];} const double& operator[](std::size_t i) const {return values[i];} private: double values[Dims]; }; public: typedef point point_type; double distance(point a, point b) const { double dist = 0; for (std::size_t i = 0; i < Dims; ++i) { double diff = b[i] - a[i]; dist += diff * diff; } // Exact properties of the distance are not important, as long as // < on what this returns matches real distances return dist; } point move_position_toward(point a, double fraction, point b) const { point result; for (std::size_t i = 0; i < Dims; ++i) result[i] = a[i] + (b[i] - a[i]) * fraction; return result; } }; template class hypercube_topology : public convex_topology { typedef uniform_01 rand_t; public: typedef typename convex_topology::point_type point_type; explicit hypercube_topology(double scaling = 1.0) : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)), scaling(scaling) { } hypercube_topology(RandomNumberGenerator& gen, double scaling = 1.0) : gen_ptr(), rand(new rand_t(gen)), scaling(scaling) { } point_type random_point() const { point_type p; for (std::size_t i = 0; i < Dims; ++i) p[i] = (*rand)() * scaling; return p; } private: shared_ptr gen_ptr; shared_ptr rand; double scaling; }; template class square_topology : public hypercube_topology<2, RandomNumberGenerator> { typedef hypercube_topology<2, RandomNumberGenerator> inherited; public: explicit square_topology(double scaling = 1.0) : inherited(scaling) { } square_topology(RandomNumberGenerator& gen, double scaling = 1.0) : inherited(gen, scaling) { } }; template class cube_topology : public hypercube_topology<3, RandomNumberGenerator> { typedef hypercube_topology<3, RandomNumberGenerator> inherited; public: explicit cube_topology(double scaling = 1.0) : inherited(scaling) { } cube_topology(RandomNumberGenerator& gen, double scaling = 1.0) : inherited(gen, scaling) { } }; template class ball_topology : public convex_topology { typedef uniform_01 rand_t; public: typedef typename convex_topology::point_type point_type; explicit ball_topology(double radius = 1.0) : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)), radius(radius) { } ball_topology(RandomNumberGenerator& gen, double radius = 1.0) : gen_ptr(), rand(new rand_t(gen)), radius(radius) { } point_type random_point() const { point_type p; double dist_sum; do { dist_sum = 0.0; for (std::size_t i = 0; i < Dims; ++i) { double x = (*rand)() * 2*radius - radius; p[i] = x; dist_sum += x * x; } } while (dist_sum > radius*radius); return p; } private: shared_ptr gen_ptr; shared_ptr rand; double radius; }; template class circle_topology : public ball_topology<2, RandomNumberGenerator> { typedef ball_topology<2, RandomNumberGenerator> inherited; public: explicit circle_topology(double radius = 1.0) : inherited(radius) { } circle_topology(RandomNumberGenerator& gen, double radius = 1.0) : inherited(gen, radius) { } }; template class sphere_topology : public ball_topology<3, RandomNumberGenerator> { typedef ball_topology<3, RandomNumberGenerator> inherited; public: explicit sphere_topology(double radius = 1.0) : inherited(radius) { } sphere_topology(RandomNumberGenerator& gen, double radius = 1.0) : inherited(gen, radius) { } }; template class heart_topology { // Heart is defined as the union of three shapes: // Square w/ corners (+-1000, -1000), (0, 0), (0, -2000) // Circle centered at (-500, -500) radius 500*sqrt(2) // Circle centered at (500, -500) radius 500*sqrt(2) // Bounding box (-1000, -2000) - (1000, 500*(sqrt(2) - 1)) struct point { point() { values[0] = 0.0; values[1] = 0.0; } point(double x, double y) { values[0] = x; values[1] = y; } double& operator[](std::size_t i) { return values[i]; } double operator[](std::size_t i) const { return values[i]; } private: double values[2]; }; bool in_heart(point p) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::abs; using std::pow; #endif if (p[1] < abs(p[0]) - 2000) return false; // Bottom if (p[1] <= -1000) return true; // Diagonal of square if (pow(p[0] - -500, 2) + pow(p[1] - -500, 2) <= 500000) return true; // Left circle if (pow(p[0] - 500, 2) + pow(p[1] - -500, 2) <= 500000) return true; // Right circle return false; } bool segment_within_heart(point p1, point p2) const { // Assumes that p1 and p2 are within the heart if ((p1[0] < 0) == (p2[0] < 0)) return true; // Same side of symmetry line if (p1[0] == p2[0]) return true; // Vertical double slope = (p2[1] - p1[1]) / (p2[0] - p1[0]); double intercept = p1[1] - p1[0] * slope; if (intercept > 0) return false; // Crosses between circles return true; } typedef uniform_01 rand_t; public: typedef point point_type; heart_topology() : gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)) { } heart_topology(RandomNumberGenerator& gen) : gen_ptr(), rand(new rand_t(gen)) { } point random_point() const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif point result; double sqrt2 = sqrt(2.); do { result[0] = (*rand)() * (1000 + 1000 * sqrt2) - (500 + 500 * sqrt2); result[1] = (*rand)() * (2000 + 500 * (sqrt2 - 1)) - 2000; } while (!in_heart(result)); return result; } double distance(point a, point b) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif if (segment_within_heart(a, b)) { // Straight line return sqrt((b[0] - a[0]) * (b[0] - a[0]) + (b[1] - a[1]) * (b[1] - a[1])); } else { // Straight line bending around (0, 0) return sqrt(a[0] * a[0] + a[1] * a[1]) + sqrt(b[0] * b[0] + b[1] * b[1]); } } point move_position_toward(point a, double fraction, point b) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif if (segment_within_heart(a, b)) { // Straight line return point(a[0] + (b[0] - a[0]) * fraction, a[1] + (b[1] - a[1]) * fraction); } else { double distance_to_point_a = sqrt(a[0] * a[0] + a[1] * a[1]); double distance_to_point_b = sqrt(b[0] * b[0] + b[1] * b[1]); double location_of_point = distance_to_point_a / (distance_to_point_a + distance_to_point_b); if (fraction < location_of_point) return point(a[0] * (1 - fraction / location_of_point), a[1] * (1 - fraction / location_of_point)); else return point( b[0] * ((fraction - location_of_point) / (1 - location_of_point)), b[1] * ((fraction - location_of_point) / (1 - location_of_point))); } } private: shared_ptr gen_ptr; shared_ptr rand; }; } // namespace boost #endif // BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP