1 | // Copyright 2004 The Trustees of Indiana University.
|
---|
2 |
|
---|
3 | // Use, modification and distribution is subject to the Boost Software
|
---|
4 | // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
---|
5 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
6 |
|
---|
7 | // Authors: Douglas Gregor
|
---|
8 | // Andrew Lumsdaine
|
---|
9 | #ifndef BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
---|
10 | #define BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
---|
11 |
|
---|
12 | #include <boost/graph/graph_traits.hpp>
|
---|
13 | #include <boost/graph/johnson_all_pairs_shortest.hpp>
|
---|
14 | #include <boost/type_traits/is_convertible.hpp>
|
---|
15 | #include <utility>
|
---|
16 | #include <iterator>
|
---|
17 | #include <vector>
|
---|
18 | #include <boost/limits.hpp>
|
---|
19 | #include <cmath>
|
---|
20 |
|
---|
21 | namespace boost {
|
---|
22 | namespace detail { namespace graph {
|
---|
23 | /**
|
---|
24 | * Denotes an edge or display area side length used to scale a
|
---|
25 | * Kamada-Kawai drawing.
|
---|
26 | */
|
---|
27 | template<bool Edge, typename T>
|
---|
28 | struct edge_or_side
|
---|
29 | {
|
---|
30 | explicit edge_or_side(T value) : value(value) {}
|
---|
31 |
|
---|
32 | T value;
|
---|
33 | };
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * Compute the edge length from an edge length. This is trivial.
|
---|
37 | */
|
---|
38 | template<typename Graph, typename DistanceMap, typename IndexMap,
|
---|
39 | typename T>
|
---|
40 | T compute_edge_length(const Graph&, DistanceMap, IndexMap,
|
---|
41 | edge_or_side<true, T> length)
|
---|
42 | { return length.value; }
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * Compute the edge length based on the display area side
|
---|
46 | length. We do this by dividing the side length by the largest
|
---|
47 | shortest distance between any two vertices in the graph.
|
---|
48 | */
|
---|
49 | template<typename Graph, typename DistanceMap, typename IndexMap,
|
---|
50 | typename T>
|
---|
51 | T
|
---|
52 | compute_edge_length(const Graph& g, DistanceMap distance, IndexMap index,
|
---|
53 | edge_or_side<false, T> length)
|
---|
54 | {
|
---|
55 | T result(0);
|
---|
56 |
|
---|
57 | typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
---|
58 |
|
---|
59 | for (vertex_iterator ui = vertices(g).first, end = vertices(g).second;
|
---|
60 | ui != end; ++ui) {
|
---|
61 | vertex_iterator vi = ui;
|
---|
62 | for (++vi; vi != end; ++vi) {
|
---|
63 | T dij = distance[get(index, *ui)][get(index, *vi)];
|
---|
64 | if (dij > result) result = dij;
|
---|
65 | }
|
---|
66 | }
|
---|
67 | return length.value / result;
|
---|
68 | }
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Implementation of the Kamada-Kawai spring layout algorithm.
|
---|
72 | */
|
---|
73 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
74 | typename EdgeOrSideLength, typename Done,
|
---|
75 | typename VertexIndexMap, typename DistanceMatrix,
|
---|
76 | typename SpringStrengthMatrix, typename PartialDerivativeMap>
|
---|
77 | struct kamada_kawai_spring_layout_impl
|
---|
78 | {
|
---|
79 | typedef typename property_traits<WeightMap>::value_type weight_type;
|
---|
80 | typedef std::pair<weight_type, weight_type> deriv_type;
|
---|
81 | typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
---|
82 | typedef typename graph_traits<Graph>::vertex_descriptor
|
---|
83 | vertex_descriptor;
|
---|
84 |
|
---|
85 | kamada_kawai_spring_layout_impl(
|
---|
86 | const Graph& g,
|
---|
87 | PositionMap position,
|
---|
88 | WeightMap weight,
|
---|
89 | EdgeOrSideLength edge_or_side_length,
|
---|
90 | Done done,
|
---|
91 | weight_type spring_constant,
|
---|
92 | VertexIndexMap index,
|
---|
93 | DistanceMatrix distance,
|
---|
94 | SpringStrengthMatrix spring_strength,
|
---|
95 | PartialDerivativeMap partial_derivatives)
|
---|
96 | : g(g), position(position), weight(weight),
|
---|
97 | edge_or_side_length(edge_or_side_length), done(done),
|
---|
98 | spring_constant(spring_constant), index(index), distance(distance),
|
---|
99 | spring_strength(spring_strength),
|
---|
100 | partial_derivatives(partial_derivatives) {}
|
---|
101 |
|
---|
102 | // Compute contribution of vertex i to the first partial
|
---|
103 | // derivatives (dE/dx_m, dE/dy_m) (for vertex m)
|
---|
104 | deriv_type
|
---|
105 | compute_partial_derivative(vertex_descriptor m, vertex_descriptor i)
|
---|
106 | {
|
---|
107 | #ifndef BOOST_NO_STDC_NAMESPACE
|
---|
108 | using std::sqrt;
|
---|
109 | #endif // BOOST_NO_STDC_NAMESPACE
|
---|
110 |
|
---|
111 | deriv_type result(0, 0);
|
---|
112 | if (i != m) {
|
---|
113 | weight_type x_diff = position[m].x - position[i].x;
|
---|
114 | weight_type y_diff = position[m].y - position[i].y;
|
---|
115 | weight_type dist = sqrt(x_diff * x_diff + y_diff * y_diff);
|
---|
116 | result.first = spring_strength[get(index, m)][get(index, i)]
|
---|
117 | * (x_diff - distance[get(index, m)][get(index, i)]*x_diff/dist);
|
---|
118 | result.second = spring_strength[get(index, m)][get(index, i)]
|
---|
119 | * (y_diff - distance[get(index, m)][get(index, i)]*y_diff/dist);
|
---|
120 | }
|
---|
121 |
|
---|
122 | return result;
|
---|
123 | }
|
---|
124 |
|
---|
125 | // Compute partial derivatives dE/dx_m and dE/dy_m
|
---|
126 | deriv_type
|
---|
127 | compute_partial_derivatives(vertex_descriptor m)
|
---|
128 | {
|
---|
129 | #ifndef BOOST_NO_STDC_NAMESPACE
|
---|
130 | using std::sqrt;
|
---|
131 | #endif // BOOST_NO_STDC_NAMESPACE
|
---|
132 |
|
---|
133 | deriv_type result(0, 0);
|
---|
134 |
|
---|
135 | // TBD: looks like an accumulate to me
|
---|
136 | std::pair<vertex_iterator, vertex_iterator> verts = vertices(g);
|
---|
137 | for (/* no init */; verts.first != verts.second; ++verts.first) {
|
---|
138 | vertex_descriptor i = *verts.first;
|
---|
139 | deriv_type deriv = compute_partial_derivative(m, i);
|
---|
140 | result.first += deriv.first;
|
---|
141 | result.second += deriv.second;
|
---|
142 | }
|
---|
143 |
|
---|
144 | return result;
|
---|
145 | }
|
---|
146 |
|
---|
147 | // The actual Kamada-Kawai spring layout algorithm implementation
|
---|
148 | bool run()
|
---|
149 | {
|
---|
150 | #ifndef BOOST_NO_STDC_NAMESPACE
|
---|
151 | using std::sqrt;
|
---|
152 | #endif // BOOST_NO_STDC_NAMESPACE
|
---|
153 |
|
---|
154 | // Compute d_{ij} and place it in the distance matrix
|
---|
155 | if (!johnson_all_pairs_shortest_paths(g, distance, index, weight,
|
---|
156 | weight_type(0)))
|
---|
157 | return false;
|
---|
158 |
|
---|
159 | // Compute L based on side length (if needed), or retrieve L
|
---|
160 | weight_type edge_length =
|
---|
161 | detail::graph::compute_edge_length(g, distance, index,
|
---|
162 | edge_or_side_length);
|
---|
163 |
|
---|
164 | // Compute l_{ij} and k_{ij}
|
---|
165 | const weight_type K = spring_constant;
|
---|
166 | vertex_iterator ui, end = vertices(g).second;
|
---|
167 | for (ui = vertices(g).first; ui != end; ++ui) {
|
---|
168 | vertex_iterator vi = ui;
|
---|
169 | for (++vi; vi != end; ++vi) {
|
---|
170 | weight_type dij = distance[get(index, *ui)][get(index, *vi)];
|
---|
171 | if (dij == (std::numeric_limits<weight_type>::max)())
|
---|
172 | return false;
|
---|
173 | distance[get(index, *ui)][get(index, *vi)] = edge_length * dij;
|
---|
174 | distance[get(index, *vi)][get(index, *ui)] = edge_length * dij;
|
---|
175 | spring_strength[get(index, *ui)][get(index, *vi)] = K/(dij*dij);
|
---|
176 | spring_strength[get(index, *vi)][get(index, *ui)] = K/(dij*dij);
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | // Compute Delta_i and find max
|
---|
181 | vertex_descriptor p = *vertices(g).first;
|
---|
182 | weight_type delta_p(0);
|
---|
183 |
|
---|
184 | for (ui = vertices(g).first; ui != end; ++ui) {
|
---|
185 | deriv_type deriv = compute_partial_derivatives(*ui);
|
---|
186 | put(partial_derivatives, *ui, deriv);
|
---|
187 |
|
---|
188 | weight_type delta =
|
---|
189 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second);
|
---|
190 |
|
---|
191 | if (delta > delta_p) {
|
---|
192 | p = *ui;
|
---|
193 | delta_p = delta;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | while (!done(delta_p, p, g, true)) {
|
---|
198 | // The contribution p makes to the partial derivatives of
|
---|
199 | // each vertex. Computing this (at O(n) cost) allows us to
|
---|
200 | // update the delta_i values in O(n) time instead of O(n^2)
|
---|
201 | // time.
|
---|
202 | std::vector<deriv_type> p_partials(num_vertices(g));
|
---|
203 | for (ui = vertices(g).first; ui != end; ++ui) {
|
---|
204 | vertex_descriptor i = *ui;
|
---|
205 | p_partials[get(index, i)] = compute_partial_derivative(i, p);
|
---|
206 | }
|
---|
207 |
|
---|
208 | do {
|
---|
209 | // Compute the 4 elements of the Jacobian
|
---|
210 | weight_type dE_dx_dx = 0, dE_dx_dy = 0, dE_dy_dx = 0, dE_dy_dy = 0;
|
---|
211 | for (ui = vertices(g).first; ui != end; ++ui) {
|
---|
212 | vertex_descriptor i = *ui;
|
---|
213 | if (i != p) {
|
---|
214 | weight_type x_diff = position[p].x - position[i].x;
|
---|
215 | weight_type y_diff = position[p].y - position[i].y;
|
---|
216 | weight_type dist = sqrt(x_diff * x_diff + y_diff * y_diff);
|
---|
217 | weight_type dist_cubed = dist * dist * dist;
|
---|
218 | weight_type k_mi = spring_strength[get(index,p)][get(index,i)];
|
---|
219 | weight_type l_mi = distance[get(index, p)][get(index, i)];
|
---|
220 | dE_dx_dx += k_mi * (1 - (l_mi * y_diff * y_diff)/dist_cubed);
|
---|
221 | dE_dx_dy += k_mi * l_mi * x_diff * y_diff / dist_cubed;
|
---|
222 | dE_dy_dx += k_mi * l_mi * x_diff * y_diff / dist_cubed;
|
---|
223 | dE_dy_dy += k_mi * (1 - (l_mi * x_diff * x_diff)/dist_cubed);
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | // Solve for delta_x and delta_y
|
---|
228 | weight_type dE_dx = get(partial_derivatives, p).first;
|
---|
229 | weight_type dE_dy = get(partial_derivatives, p).second;
|
---|
230 |
|
---|
231 | weight_type delta_x =
|
---|
232 | (dE_dx_dy * dE_dy - dE_dy_dy * dE_dx)
|
---|
233 | / (dE_dx_dx * dE_dy_dy - dE_dx_dy * dE_dy_dx);
|
---|
234 |
|
---|
235 | weight_type delta_y =
|
---|
236 | (dE_dx_dx * dE_dy - dE_dy_dx * dE_dx)
|
---|
237 | / (dE_dy_dx * dE_dx_dy - dE_dx_dx * dE_dy_dy);
|
---|
238 |
|
---|
239 |
|
---|
240 | // Move p by (delta_x, delta_y)
|
---|
241 | position[p].x += delta_x;
|
---|
242 | position[p].y += delta_y;
|
---|
243 |
|
---|
244 | // Recompute partial derivatives and delta_p
|
---|
245 | deriv_type deriv = compute_partial_derivatives(p);
|
---|
246 | put(partial_derivatives, p, deriv);
|
---|
247 |
|
---|
248 | delta_p =
|
---|
249 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second);
|
---|
250 | } while (!done(delta_p, p, g, false));
|
---|
251 |
|
---|
252 | // Select new p by updating each partial derivative and delta
|
---|
253 | vertex_descriptor old_p = p;
|
---|
254 | for (ui = vertices(g).first; ui != end; ++ui) {
|
---|
255 | deriv_type old_deriv_p = p_partials[get(index, *ui)];
|
---|
256 | deriv_type old_p_partial =
|
---|
257 | compute_partial_derivative(*ui, old_p);
|
---|
258 | deriv_type deriv = get(partial_derivatives, *ui);
|
---|
259 |
|
---|
260 | deriv.first += old_p_partial.first - old_deriv_p.first;
|
---|
261 | deriv.second += old_p_partial.second - old_deriv_p.second;
|
---|
262 |
|
---|
263 | put(partial_derivatives, *ui, deriv);
|
---|
264 | weight_type delta =
|
---|
265 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second);
|
---|
266 |
|
---|
267 | if (delta > delta_p) {
|
---|
268 | p = *ui;
|
---|
269 | delta_p = delta;
|
---|
270 | }
|
---|
271 | }
|
---|
272 | }
|
---|
273 |
|
---|
274 | return true;
|
---|
275 | }
|
---|
276 |
|
---|
277 | const Graph& g;
|
---|
278 | PositionMap position;
|
---|
279 | WeightMap weight;
|
---|
280 | EdgeOrSideLength edge_or_side_length;
|
---|
281 | Done done;
|
---|
282 | weight_type spring_constant;
|
---|
283 | VertexIndexMap index;
|
---|
284 | DistanceMatrix distance;
|
---|
285 | SpringStrengthMatrix spring_strength;
|
---|
286 | PartialDerivativeMap partial_derivatives;
|
---|
287 | };
|
---|
288 | } } // end namespace detail::graph
|
---|
289 |
|
---|
290 | /// States that the given quantity is an edge length.
|
---|
291 | template<typename T>
|
---|
292 | inline detail::graph::edge_or_side<true, T>
|
---|
293 | edge_length(T x)
|
---|
294 | { return detail::graph::edge_or_side<true, T>(x); }
|
---|
295 |
|
---|
296 | /// States that the given quantity is a display area side length.
|
---|
297 | template<typename T>
|
---|
298 | inline detail::graph::edge_or_side<false, T>
|
---|
299 | side_length(T x)
|
---|
300 | { return detail::graph::edge_or_side<false, T>(x); }
|
---|
301 |
|
---|
302 | /**
|
---|
303 | * \brief Determines when to terminate layout of a particular graph based
|
---|
304 | * on a given relative tolerance.
|
---|
305 | */
|
---|
306 | template<typename T = double>
|
---|
307 | struct layout_tolerance
|
---|
308 | {
|
---|
309 | layout_tolerance(const T& tolerance = T(0.001))
|
---|
310 | : tolerance(tolerance), last_energy((std::numeric_limits<T>::max)()),
|
---|
311 | last_local_energy((std::numeric_limits<T>::max)()) { }
|
---|
312 |
|
---|
313 | template<typename Graph>
|
---|
314 | bool
|
---|
315 | operator()(T delta_p,
|
---|
316 | typename boost::graph_traits<Graph>::vertex_descriptor p,
|
---|
317 | const Graph& g,
|
---|
318 | bool global)
|
---|
319 | {
|
---|
320 | if (global) {
|
---|
321 | if (last_energy == (std::numeric_limits<T>::max)()) {
|
---|
322 | last_energy = delta_p;
|
---|
323 | return false;
|
---|
324 | }
|
---|
325 |
|
---|
326 | T diff = last_energy - delta_p;
|
---|
327 | if (diff < T(0)) diff = -diff;
|
---|
328 | bool done = (delta_p == T(0) || diff / last_energy < tolerance);
|
---|
329 | last_energy = delta_p;
|
---|
330 | return done;
|
---|
331 | } else {
|
---|
332 | if (last_local_energy == (std::numeric_limits<T>::max)()) {
|
---|
333 | last_local_energy = delta_p;
|
---|
334 | return delta_p == T(0);
|
---|
335 | }
|
---|
336 |
|
---|
337 | T diff = last_local_energy - delta_p;
|
---|
338 | bool done = (delta_p == T(0) || (diff / last_local_energy) < tolerance);
|
---|
339 | last_local_energy = delta_p;
|
---|
340 | return done;
|
---|
341 | }
|
---|
342 | }
|
---|
343 |
|
---|
344 | private:
|
---|
345 | T tolerance;
|
---|
346 | T last_energy;
|
---|
347 | T last_local_energy;
|
---|
348 | };
|
---|
349 |
|
---|
350 | /** \brief Kamada-Kawai spring layout for undirected graphs.
|
---|
351 | *
|
---|
352 | * This algorithm performs graph layout (in two dimensions) for
|
---|
353 | * connected, undirected graphs. It operates by relating the layout
|
---|
354 | * of graphs to a dynamic spring system and minimizing the energy
|
---|
355 | * within that system. The strength of a spring between two vertices
|
---|
356 | * is inversely proportional to the square of the shortest distance
|
---|
357 | * (in graph terms) between those two vertices. Essentially,
|
---|
358 | * vertices that are closer in the graph-theoretic sense (i.e., by
|
---|
359 | * following edges) will have stronger springs and will therefore be
|
---|
360 | * placed closer together.
|
---|
361 | *
|
---|
362 | * Prior to invoking this algorithm, it is recommended that the
|
---|
363 | * vertices be placed along the vertices of a regular n-sided
|
---|
364 | * polygon.
|
---|
365 | *
|
---|
366 | * \param g (IN) must be a model of Vertex List Graph, Edge List
|
---|
367 | * Graph, and Incidence Graph and must be undirected.
|
---|
368 | *
|
---|
369 | * \param position (OUT) must be a model of Lvalue Property Map,
|
---|
370 | * where the value type is a class containing fields @c x and @c y
|
---|
371 | * that will be set to the @c x and @c y coordinates of each vertex.
|
---|
372 | *
|
---|
373 | * \param weight (IN) must be a model of Readable Property Map,
|
---|
374 | * which provides the weight of each edge in the graph @p g.
|
---|
375 | *
|
---|
376 | * \param edge_or_side_length (IN) provides either the unit length
|
---|
377 | * @c e of an edge in the layout or the length of a side @c s of the
|
---|
378 | * display area, and must be either @c boost::edge_length(e) or @c
|
---|
379 | * boost::side_length(s), respectively.
|
---|
380 | *
|
---|
381 | * \param done (IN) is a 4-argument function object that is passed
|
---|
382 | * the current value of delta_p (i.e., the energy of vertex @p p),
|
---|
383 | * the vertex @p p, the graph @p g, and a boolean flag indicating
|
---|
384 | * whether @p delta_p is the maximum energy in the system (when @c
|
---|
385 | * true) or the energy of the vertex being moved. Defaults to @c
|
---|
386 | * layout_tolerance instantiated over the value type of the weight
|
---|
387 | * map.
|
---|
388 | *
|
---|
389 | * \param spring_constant (IN) is the constant multiplied by each
|
---|
390 | * spring's strength. Larger values create systems with more energy
|
---|
391 | * that can take longer to stabilize; smaller values create systems
|
---|
392 | * with less energy that stabilize quickly but do not necessarily
|
---|
393 | * result in pleasing layouts. The default value is 1.
|
---|
394 | *
|
---|
395 | * \param index (IN) is a mapping from vertices to index values
|
---|
396 | * between 0 and @c num_vertices(g). The default is @c
|
---|
397 | * get(vertex_index,g).
|
---|
398 | *
|
---|
399 | * \param distance (UTIL/OUT) will be used to store the distance
|
---|
400 | * from every vertex to every other vertex, which is computed in the
|
---|
401 | * first stages of the algorithm. This value's type must be a model
|
---|
402 | * of BasicMatrix with value type equal to the value type of the
|
---|
403 | * weight map. The default is a a vector of vectors.
|
---|
404 | *
|
---|
405 | * \param spring_strength (UTIL/OUT) will be used to store the
|
---|
406 | * strength of the spring between every pair of vertices. This
|
---|
407 | * value's type must be a model of BasicMatrix with value type equal
|
---|
408 | * to the value type of the weight map. The default is a a vector of
|
---|
409 | * vectors.
|
---|
410 | *
|
---|
411 | * \param partial_derivatives (UTIL) will be used to store the
|
---|
412 | * partial derivates of each vertex with respect to the @c x and @c
|
---|
413 | * y coordinates. This must be a Read/Write Property Map whose value
|
---|
414 | * type is a pair with both types equivalent to the value type of
|
---|
415 | * the weight map. The default is an iterator property map.
|
---|
416 | *
|
---|
417 | * \returns @c true if layout was successful or @c false if a
|
---|
418 | * negative weight cycle was detected.
|
---|
419 | */
|
---|
420 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
421 | typename T, bool EdgeOrSideLength, typename Done,
|
---|
422 | typename VertexIndexMap, typename DistanceMatrix,
|
---|
423 | typename SpringStrengthMatrix, typename PartialDerivativeMap>
|
---|
424 | bool
|
---|
425 | kamada_kawai_spring_layout(
|
---|
426 | const Graph& g,
|
---|
427 | PositionMap position,
|
---|
428 | WeightMap weight,
|
---|
429 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
---|
430 | Done done,
|
---|
431 | typename property_traits<WeightMap>::value_type spring_constant,
|
---|
432 | VertexIndexMap index,
|
---|
433 | DistanceMatrix distance,
|
---|
434 | SpringStrengthMatrix spring_strength,
|
---|
435 | PartialDerivativeMap partial_derivatives)
|
---|
436 | {
|
---|
437 | BOOST_STATIC_ASSERT((is_convertible<
|
---|
438 | typename graph_traits<Graph>::directed_category*,
|
---|
439 | undirected_tag*
|
---|
440 | >::value));
|
---|
441 |
|
---|
442 | detail::graph::kamada_kawai_spring_layout_impl<
|
---|
443 | Graph, PositionMap, WeightMap,
|
---|
444 | detail::graph::edge_or_side<EdgeOrSideLength, T>, Done, VertexIndexMap,
|
---|
445 | DistanceMatrix, SpringStrengthMatrix, PartialDerivativeMap>
|
---|
446 | alg(g, position, weight, edge_or_side_length, done, spring_constant,
|
---|
447 | index, distance, spring_strength, partial_derivatives);
|
---|
448 | return alg.run();
|
---|
449 | }
|
---|
450 |
|
---|
451 | /**
|
---|
452 | * \overload
|
---|
453 | */
|
---|
454 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
455 | typename T, bool EdgeOrSideLength, typename Done,
|
---|
456 | typename VertexIndexMap>
|
---|
457 | bool
|
---|
458 | kamada_kawai_spring_layout(
|
---|
459 | const Graph& g,
|
---|
460 | PositionMap position,
|
---|
461 | WeightMap weight,
|
---|
462 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
---|
463 | Done done,
|
---|
464 | typename property_traits<WeightMap>::value_type spring_constant,
|
---|
465 | VertexIndexMap index)
|
---|
466 | {
|
---|
467 | typedef typename property_traits<WeightMap>::value_type weight_type;
|
---|
468 |
|
---|
469 | typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
|
---|
470 | typedef std::vector<weight_type> weight_vec;
|
---|
471 |
|
---|
472 | std::vector<weight_vec> distance(n, weight_vec(n));
|
---|
473 | std::vector<weight_vec> spring_strength(n, weight_vec(n));
|
---|
474 | std::vector<std::pair<weight_type, weight_type> > partial_derivatives(n);
|
---|
475 |
|
---|
476 | return
|
---|
477 | kamada_kawai_spring_layout(
|
---|
478 | g, position, weight, edge_or_side_length, done, spring_constant, index,
|
---|
479 | distance.begin(),
|
---|
480 | spring_strength.begin(),
|
---|
481 | make_iterator_property_map(partial_derivatives.begin(), index,
|
---|
482 | std::pair<weight_type, weight_type>()));
|
---|
483 | }
|
---|
484 |
|
---|
485 | /**
|
---|
486 | * \overload
|
---|
487 | */
|
---|
488 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
489 | typename T, bool EdgeOrSideLength, typename Done>
|
---|
490 | bool
|
---|
491 | kamada_kawai_spring_layout(
|
---|
492 | const Graph& g,
|
---|
493 | PositionMap position,
|
---|
494 | WeightMap weight,
|
---|
495 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
---|
496 | Done done,
|
---|
497 | typename property_traits<WeightMap>::value_type spring_constant)
|
---|
498 | {
|
---|
499 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length,
|
---|
500 | done, spring_constant,
|
---|
501 | get(vertex_index, g));
|
---|
502 | }
|
---|
503 |
|
---|
504 | /**
|
---|
505 | * \overload
|
---|
506 | */
|
---|
507 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
508 | typename T, bool EdgeOrSideLength, typename Done>
|
---|
509 | bool
|
---|
510 | kamada_kawai_spring_layout(
|
---|
511 | const Graph& g,
|
---|
512 | PositionMap position,
|
---|
513 | WeightMap weight,
|
---|
514 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
---|
515 | Done done)
|
---|
516 | {
|
---|
517 | typedef typename property_traits<WeightMap>::value_type weight_type;
|
---|
518 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length,
|
---|
519 | done, weight_type(1));
|
---|
520 | }
|
---|
521 |
|
---|
522 | /**
|
---|
523 | * \overload
|
---|
524 | */
|
---|
525 | template<typename Graph, typename PositionMap, typename WeightMap,
|
---|
526 | typename T, bool EdgeOrSideLength>
|
---|
527 | bool
|
---|
528 | kamada_kawai_spring_layout(
|
---|
529 | const Graph& g,
|
---|
530 | PositionMap position,
|
---|
531 | WeightMap weight,
|
---|
532 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length)
|
---|
533 | {
|
---|
534 | typedef typename property_traits<WeightMap>::value_type weight_type;
|
---|
535 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length,
|
---|
536 | layout_tolerance<weight_type>(),
|
---|
537 | weight_type(1.0),
|
---|
538 | get(vertex_index, g));
|
---|
539 | }
|
---|
540 | } // end namespace boost
|
---|
541 |
|
---|
542 | #endif // BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
---|