1 | /*=============================================================================
|
---|
2 | Adaptable closures
|
---|
3 |
|
---|
4 | Phoenix V0.9
|
---|
5 | Copyright (c) 2001-2002 Joel de Guzman
|
---|
6 |
|
---|
7 | Distributed under the Boost Software License, Version 1.0. (See
|
---|
8 | accompanying file LICENSE_1_0.txt or copy at
|
---|
9 | http://www.boost.org/LICENSE_1_0.txt)
|
---|
10 |
|
---|
11 | URL: http://spirit.sourceforge.net/
|
---|
12 |
|
---|
13 | ==============================================================================*/
|
---|
14 | #ifndef PHOENIX_CLOSURES_HPP
|
---|
15 | #define PHOENIX_CLOSURES_HPP
|
---|
16 |
|
---|
17 | ///////////////////////////////////////////////////////////////////////////////
|
---|
18 | #include "boost/lambda/core.hpp"
|
---|
19 | ///////////////////////////////////////////////////////////////////////////////
|
---|
20 | namespace boost {
|
---|
21 | namespace lambda {
|
---|
22 |
|
---|
23 | ///////////////////////////////////////////////////////////////////////////////
|
---|
24 | //
|
---|
25 | // Adaptable closures
|
---|
26 | //
|
---|
27 | // The framework will not be complete without some form of closures
|
---|
28 | // support. Closures encapsulate a stack frame where local
|
---|
29 | // variables are created upon entering a function and destructed
|
---|
30 | // upon exiting. Closures provide an environment for local
|
---|
31 | // variables to reside. Closures can hold heterogeneous types.
|
---|
32 | //
|
---|
33 | // Phoenix closures are true hardware stack based closures. At the
|
---|
34 | // very least, closures enable true reentrancy in lambda functions.
|
---|
35 | // A closure provides access to a function stack frame where local
|
---|
36 | // variables reside. Modeled after Pascal nested stack frames,
|
---|
37 | // closures can be nested just like nested functions where code in
|
---|
38 | // inner closures may access local variables from in-scope outer
|
---|
39 | // closures (accessing inner scopes from outer scopes is an error
|
---|
40 | // and will cause a run-time assertion failure).
|
---|
41 | //
|
---|
42 | // There are three (3) interacting classes:
|
---|
43 | //
|
---|
44 | // 1) closure:
|
---|
45 | //
|
---|
46 | // At the point of declaration, a closure does not yet create a
|
---|
47 | // stack frame nor instantiate any variables. A closure declaration
|
---|
48 | // declares the types and names[note] of the local variables. The
|
---|
49 | // closure class is meant to be subclassed. It is the
|
---|
50 | // responsibility of a closure subclass to supply the names for
|
---|
51 | // each of the local variable in the closure. Example:
|
---|
52 | //
|
---|
53 | // struct my_closure : closure<int, string, double> {
|
---|
54 | //
|
---|
55 | // member1 num; // names the 1st (int) local variable
|
---|
56 | // member2 message; // names the 2nd (string) local variable
|
---|
57 | // member3 real; // names the 3rd (double) local variable
|
---|
58 | // };
|
---|
59 | //
|
---|
60 | // my_closure clos;
|
---|
61 | //
|
---|
62 | // Now that we have a closure 'clos', its local variables can be
|
---|
63 | // accessed lazily using the dot notation. Each qualified local
|
---|
64 | // variable can be used just like any primitive actor (see
|
---|
65 | // primitives.hpp). Examples:
|
---|
66 | //
|
---|
67 | // clos.num = 30
|
---|
68 | // clos.message = arg1
|
---|
69 | // clos.real = clos.num * 1e6
|
---|
70 | //
|
---|
71 | // The examples above are lazily evaluated. As usual, these
|
---|
72 | // expressions return composite actors that will be evaluated
|
---|
73 | // through a second function call invocation (see operators.hpp).
|
---|
74 | // Each of the members (clos.xxx) is an actor. As such, applying
|
---|
75 | // the operator() will reveal its identity:
|
---|
76 | //
|
---|
77 | // clos.num() // will return the current value of clos.num
|
---|
78 | //
|
---|
79 | // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
|
---|
80 | // introduced and initilally implemented the closure member names
|
---|
81 | // that uses the dot notation.
|
---|
82 | //
|
---|
83 | // 2) closure_member
|
---|
84 | //
|
---|
85 | // The named local variables of closure 'clos' above are actually
|
---|
86 | // closure members. The closure_member class is an actor and
|
---|
87 | // conforms to its conceptual interface. member1..memberN are
|
---|
88 | // predefined typedefs that correspond to each of the listed types
|
---|
89 | // in the closure template parameters.
|
---|
90 | //
|
---|
91 | // 3) closure_frame
|
---|
92 | //
|
---|
93 | // When a closure member is finally evaluated, it should refer to
|
---|
94 | // an actual instance of the variable in the hardware stack.
|
---|
95 | // Without doing so, the process is not complete and the evaluated
|
---|
96 | // member will result to an assertion failure. Remember that the
|
---|
97 | // closure is just a declaration. The local variables that a
|
---|
98 | // closure refers to must still be instantiated.
|
---|
99 | //
|
---|
100 | // The closure_frame class does the actual instantiation of the
|
---|
101 | // local variables and links these variables with the closure and
|
---|
102 | // all its members. There can be multiple instances of
|
---|
103 | // closure_frames typically situated in the stack inside a
|
---|
104 | // function. Each closure_frame instance initiates a stack frame
|
---|
105 | // with a new set of closure local variables. Example:
|
---|
106 | //
|
---|
107 | // void foo()
|
---|
108 | // {
|
---|
109 | // closure_frame<my_closure> frame(clos);
|
---|
110 | // /* do something */
|
---|
111 | // }
|
---|
112 | //
|
---|
113 | // where 'clos' is an instance of our closure 'my_closure' above.
|
---|
114 | // Take note that the usage above precludes locally declared
|
---|
115 | // classes. If my_closure is a locally declared type, we can still
|
---|
116 | // use its self_type as a paramater to closure_frame:
|
---|
117 | //
|
---|
118 | // closure_frame<my_closure::self_type> frame(clos);
|
---|
119 | //
|
---|
120 | // Upon instantiation, the closure_frame links the local variables
|
---|
121 | // to the closure. The previous link to another closure_frame
|
---|
122 | // instance created before is saved. Upon destruction, the
|
---|
123 | // closure_frame unlinks itself from the closure and relinks the
|
---|
124 | // preceding closure_frame prior to this instance.
|
---|
125 | //
|
---|
126 | // The local variables in the closure 'clos' above is default
|
---|
127 | // constructed in the stack inside function 'foo'. Once 'foo' is
|
---|
128 | // exited, all of these local variables are destructed. In some
|
---|
129 | // cases, default construction is not desirable and we need to
|
---|
130 | // initialize the local closure variables with some values. This
|
---|
131 | // can be done by passing in the initializers in a compatible
|
---|
132 | // tuple. A compatible tuple is one with the same number of
|
---|
133 | // elements as the destination and where each element from the
|
---|
134 | // destination can be constructed from each corresponding element
|
---|
135 | // in the source. Example:
|
---|
136 | //
|
---|
137 | // tuple<int, char const*, int> init(123, "Hello", 1000);
|
---|
138 | // closure_frame<my_closure> frame(clos, init);
|
---|
139 | //
|
---|
140 | // Here now, our closure_frame's variables are initialized with
|
---|
141 | // int: 123, char const*: "Hello" and int: 1000.
|
---|
142 | //
|
---|
143 | ///////////////////////////////////////////////////////////////////////////////
|
---|
144 |
|
---|
145 |
|
---|
146 |
|
---|
147 | ///////////////////////////////////////////////////////////////////////////////
|
---|
148 | //
|
---|
149 | // closure_frame class
|
---|
150 | //
|
---|
151 | ///////////////////////////////////////////////////////////////////////////////
|
---|
152 | template <typename ClosureT>
|
---|
153 | class closure_frame : public ClosureT::tuple_t {
|
---|
154 |
|
---|
155 | public:
|
---|
156 |
|
---|
157 | closure_frame(ClosureT& clos)
|
---|
158 | : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
|
---|
159 | { clos.frame = this; }
|
---|
160 |
|
---|
161 | template <typename TupleT>
|
---|
162 | closure_frame(ClosureT& clos, TupleT const& init)
|
---|
163 | : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
|
---|
164 | { clos.frame = this; }
|
---|
165 |
|
---|
166 | ~closure_frame()
|
---|
167 | { frame = save; }
|
---|
168 |
|
---|
169 | private:
|
---|
170 |
|
---|
171 | closure_frame(closure_frame const&); // no copy
|
---|
172 | closure_frame& operator=(closure_frame const&); // no assign
|
---|
173 |
|
---|
174 | closure_frame* save;
|
---|
175 | closure_frame*& frame;
|
---|
176 | };
|
---|
177 |
|
---|
178 | ///////////////////////////////////////////////////////////////////////////////
|
---|
179 | //
|
---|
180 | // closure_member class
|
---|
181 | //
|
---|
182 | ///////////////////////////////////////////////////////////////////////////////
|
---|
183 | template <int N, typename ClosureT>
|
---|
184 | class closure_member {
|
---|
185 |
|
---|
186 | public:
|
---|
187 |
|
---|
188 | typedef typename ClosureT::tuple_t tuple_t;
|
---|
189 |
|
---|
190 | closure_member()
|
---|
191 | : frame(ClosureT::closure_frame_ref()) {}
|
---|
192 |
|
---|
193 | template <typename TupleT>
|
---|
194 | struct sig {
|
---|
195 |
|
---|
196 | typedef typename detail::tuple_element_as_reference<
|
---|
197 | N, typename ClosureT::tuple_t
|
---|
198 | >::type type;
|
---|
199 | };
|
---|
200 |
|
---|
201 | template <class Ret, class A, class B, class C>
|
---|
202 | // typename detail::tuple_element_as_reference
|
---|
203 | // <N, typename ClosureT::tuple_t>::type
|
---|
204 | Ret
|
---|
205 | call(A&, B&, C&) const
|
---|
206 | {
|
---|
207 | assert(frame);
|
---|
208 | return boost::tuples::get<N>(*frame);
|
---|
209 | }
|
---|
210 |
|
---|
211 |
|
---|
212 | private:
|
---|
213 |
|
---|
214 | typename ClosureT::closure_frame_t*& frame;
|
---|
215 | };
|
---|
216 |
|
---|
217 | ///////////////////////////////////////////////////////////////////////////////
|
---|
218 | //
|
---|
219 | // closure class
|
---|
220 | //
|
---|
221 | ///////////////////////////////////////////////////////////////////////////////
|
---|
222 | template <
|
---|
223 | typename T0 = null_type,
|
---|
224 | typename T1 = null_type,
|
---|
225 | typename T2 = null_type,
|
---|
226 | typename T3 = null_type,
|
---|
227 | typename T4 = null_type
|
---|
228 | >
|
---|
229 | class closure {
|
---|
230 |
|
---|
231 | public:
|
---|
232 |
|
---|
233 | typedef tuple<T0, T1, T2, T3, T4> tuple_t;
|
---|
234 | typedef closure<T0, T1, T2, T3, T4> self_t;
|
---|
235 | typedef closure_frame<self_t> closure_frame_t;
|
---|
236 |
|
---|
237 | closure()
|
---|
238 | : frame(0) { closure_frame_ref(&frame); }
|
---|
239 | closure_frame_t& context() { assert(frame); return frame; }
|
---|
240 | closure_frame_t const& context() const { assert(frame); return frame; }
|
---|
241 |
|
---|
242 | typedef lambda_functor<closure_member<0, self_t> > member1;
|
---|
243 | typedef lambda_functor<closure_member<1, self_t> > member2;
|
---|
244 | typedef lambda_functor<closure_member<2, self_t> > member3;
|
---|
245 | typedef lambda_functor<closure_member<3, self_t> > member4;
|
---|
246 | typedef lambda_functor<closure_member<4, self_t> > member5;
|
---|
247 |
|
---|
248 | private:
|
---|
249 |
|
---|
250 | closure(closure const&); // no copy
|
---|
251 | closure& operator=(closure const&); // no assign
|
---|
252 |
|
---|
253 | template <int N, typename ClosureT>
|
---|
254 | friend struct closure_member;
|
---|
255 |
|
---|
256 | template <typename ClosureT>
|
---|
257 | friend class closure_frame;
|
---|
258 |
|
---|
259 | static closure_frame_t*&
|
---|
260 | closure_frame_ref(closure_frame_t** frame_ = 0)
|
---|
261 | {
|
---|
262 | static closure_frame_t** frame = 0;
|
---|
263 | if (frame_ != 0)
|
---|
264 | frame = frame_;
|
---|
265 | return *frame;
|
---|
266 | }
|
---|
267 |
|
---|
268 | closure_frame_t* frame;
|
---|
269 | };
|
---|
270 |
|
---|
271 | }}
|
---|
272 | // namespace
|
---|
273 |
|
---|
274 | #endif
|
---|