[857] | 1 | // Boost Lambda Library ret.hpp -----------------------------------------
|
---|
| 2 |
|
---|
| 3 | // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
---|
| 4 | //
|
---|
| 5 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
| 6 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
| 7 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 8 | //
|
---|
| 9 | // For more information, see www.boost.org
|
---|
| 10 |
|
---|
| 11 |
|
---|
| 12 | #ifndef BOOST_LAMBDA_RET_HPP
|
---|
| 13 | #define BOOST_LAMBDA_RET_HPP
|
---|
| 14 |
|
---|
| 15 | namespace boost {
|
---|
| 16 | namespace lambda {
|
---|
| 17 |
|
---|
| 18 | // TODO:
|
---|
| 19 |
|
---|
| 20 | // Add specializations for function references for ret, protect and unlambda
|
---|
| 21 | // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
|
---|
| 22 | // for a function type.
|
---|
| 23 | // on the other hand unlambda(*foo) does work
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | // -- ret -------------------------
|
---|
| 27 | // the explicit return type template
|
---|
| 28 |
|
---|
| 29 | // TODO: It'd be nice to make ret a nop for other than lambda functors
|
---|
| 30 | // but causes an ambiguiyty with gcc (not with KCC), check what is the
|
---|
| 31 | // right interpretation.
|
---|
| 32 |
|
---|
| 33 | // // ret for others than lambda functors has no effect
|
---|
| 34 | // template <class U, class T>
|
---|
| 35 | // inline const T& ret(const T& t) { return t; }
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | template<class RET, class Arg>
|
---|
| 39 | inline const
|
---|
| 40 | lambda_functor<
|
---|
| 41 | lambda_functor_base<
|
---|
| 42 | explicit_return_type_action<RET>,
|
---|
| 43 | tuple<lambda_functor<Arg> >
|
---|
| 44 | >
|
---|
| 45 | >
|
---|
| 46 | ret(const lambda_functor<Arg>& a1)
|
---|
| 47 | {
|
---|
| 48 | return
|
---|
| 49 | lambda_functor_base<
|
---|
| 50 | explicit_return_type_action<RET>,
|
---|
| 51 | tuple<lambda_functor<Arg> >
|
---|
| 52 | >
|
---|
| 53 | (tuple<lambda_functor<Arg> >(a1));
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | // protect ------------------
|
---|
| 57 |
|
---|
| 58 | // protecting others than lambda functors has no effect
|
---|
| 59 | template <class T>
|
---|
| 60 | inline const T& protect(const T& t) { return t; }
|
---|
| 61 |
|
---|
| 62 | template<class Arg>
|
---|
| 63 | inline const
|
---|
| 64 | lambda_functor<
|
---|
| 65 | lambda_functor_base<
|
---|
| 66 | protect_action,
|
---|
| 67 | tuple<lambda_functor<Arg> >
|
---|
| 68 | >
|
---|
| 69 | >
|
---|
| 70 | protect(const lambda_functor<Arg>& a1)
|
---|
| 71 | {
|
---|
| 72 | return
|
---|
| 73 | lambda_functor_base<
|
---|
| 74 | protect_action,
|
---|
| 75 | tuple<lambda_functor<Arg> >
|
---|
| 76 | >
|
---|
| 77 | (tuple<lambda_functor<Arg> >(a1));
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | // -------------------------------------------------------------------
|
---|
| 81 |
|
---|
| 82 | // Hides the lambda functorness of a lambda functor.
|
---|
| 83 | // After this, the functor is immune to argument substitution, etc.
|
---|
| 84 | // This can be used, e.g. to make it safe to pass lambda functors as
|
---|
| 85 | // arguments to functions, which might use them as target functions
|
---|
| 86 |
|
---|
| 87 | // note, unlambda and protect are different things. Protect hides the lambda
|
---|
| 88 | // functor for one application, unlambda for good.
|
---|
| 89 |
|
---|
| 90 | template <class LambdaFunctor>
|
---|
| 91 | class non_lambda_functor
|
---|
| 92 | {
|
---|
| 93 | LambdaFunctor lf;
|
---|
| 94 | public:
|
---|
| 95 |
|
---|
| 96 | // This functor defines the result_type typedef.
|
---|
| 97 | // The result type must be deducible without knowing the arguments
|
---|
| 98 |
|
---|
| 99 | template <class SigArgs> struct sig {
|
---|
| 100 | typedef typename
|
---|
| 101 | LambdaFunctor::inherited::
|
---|
| 102 | template sig<typename SigArgs::tail_type>::type type;
|
---|
| 103 | };
|
---|
| 104 |
|
---|
| 105 | explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
| 106 |
|
---|
| 107 | typename LambdaFunctor::nullary_return_type
|
---|
| 108 | operator()() const {
|
---|
| 109 | return lf.template
|
---|
| 110 | call<typename LambdaFunctor::nullary_return_type>
|
---|
| 111 | (cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | template<class A>
|
---|
| 115 | typename sig<tuple<const non_lambda_functor, A&> >::type
|
---|
| 116 | operator()(A& a) const {
|
---|
| 117 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | template<class A, class B>
|
---|
| 121 | typename sig<tuple<const non_lambda_functor, A&, B&> >::type
|
---|
| 122 | operator()(A& a, B& b) const {
|
---|
| 123 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | template<class A, class B, class C>
|
---|
| 127 | typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
|
---|
| 128 | operator()(A& a, B& b, C& c) const {
|
---|
| 129 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
|
---|
| 130 | }
|
---|
| 131 | };
|
---|
| 132 |
|
---|
| 133 | template <class Arg>
|
---|
| 134 | inline const Arg& unlambda(const Arg& a) { return a; }
|
---|
| 135 |
|
---|
| 136 | template <class Arg>
|
---|
| 137 | inline const non_lambda_functor<lambda_functor<Arg> >
|
---|
| 138 | unlambda(const lambda_functor<Arg>& a)
|
---|
| 139 | {
|
---|
| 140 | return non_lambda_functor<lambda_functor<Arg> >(a);
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | // Due to a language restriction, lambda functors cannot be made to
|
---|
| 144 | // accept non-const rvalue arguments. Usually iterators do not return
|
---|
| 145 | // temporaries, but sometimes they do. That's why a workaround is provided.
|
---|
| 146 | // Note, that this potentially breaks const correctness, so be careful!
|
---|
| 147 |
|
---|
| 148 | // any lambda functor can be turned into a const_incorrect_lambda_functor
|
---|
| 149 | // The operator() takes arguments as consts and then casts constness
|
---|
| 150 | // away. So this breaks const correctness!!! but is a necessary workaround
|
---|
| 151 | // in some cases due to language limitations.
|
---|
| 152 | // Note, that this is not a lambda_functor anymore, so it can not be used
|
---|
| 153 | // as a sub lambda expression.
|
---|
| 154 |
|
---|
| 155 | template <class LambdaFunctor>
|
---|
| 156 | struct const_incorrect_lambda_functor {
|
---|
| 157 | LambdaFunctor lf;
|
---|
| 158 | public:
|
---|
| 159 |
|
---|
| 160 | explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
| 161 |
|
---|
| 162 | template <class SigArgs> struct sig {
|
---|
| 163 | typedef typename
|
---|
| 164 | LambdaFunctor::inherited::template
|
---|
| 165 | sig<typename SigArgs::tail_type>::type type;
|
---|
| 166 | };
|
---|
| 167 |
|
---|
| 168 | // The nullary case is not needed (no arguments, no parameter type problems)
|
---|
| 169 |
|
---|
| 170 | template<class A>
|
---|
| 171 | typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
|
---|
| 172 | operator()(const A& a) const {
|
---|
| 173 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | template<class A, class B>
|
---|
| 177 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
|
---|
| 178 | operator()(const A& a, const B& b) const {
|
---|
| 179 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | template<class A, class B, class C>
|
---|
| 183 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
|
---|
| 184 | operator()(const A& a, const B& b, const C& c) const {
|
---|
| 185 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
|
---|
| 186 | }
|
---|
| 187 | };
|
---|
| 188 |
|
---|
| 189 | // ------------------------------------------------------------------------
|
---|
| 190 | // any lambda functor can be turned into a const_parameter_lambda_functor
|
---|
| 191 | // The operator() takes arguments as const.
|
---|
| 192 | // This is useful if lambda functors are called with non-const rvalues.
|
---|
| 193 | // Note, that this is not a lambda_functor anymore, so it can not be used
|
---|
| 194 | // as a sub lambda expression.
|
---|
| 195 |
|
---|
| 196 | template <class LambdaFunctor>
|
---|
| 197 | struct const_parameter_lambda_functor {
|
---|
| 198 | LambdaFunctor lf;
|
---|
| 199 | public:
|
---|
| 200 |
|
---|
| 201 | explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
| 202 |
|
---|
| 203 | template <class SigArgs> struct sig {
|
---|
| 204 | typedef typename
|
---|
| 205 | LambdaFunctor::inherited::template
|
---|
| 206 | sig<typename SigArgs::tail_type>::type type;
|
---|
| 207 | };
|
---|
| 208 |
|
---|
| 209 | // The nullary case is not needed: no arguments, no constness problems.
|
---|
| 210 |
|
---|
| 211 | template<class A>
|
---|
| 212 | typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
|
---|
| 213 | operator()(const A& a) const {
|
---|
| 214 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | template<class A, class B>
|
---|
| 218 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
|
---|
| 219 | operator()(const A& a, const B& b) const {
|
---|
| 220 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | template<class A, class B, class C>
|
---|
| 224 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
|
---|
| 225 | >::type
|
---|
| 226 | operator()(const A& a, const B& b, const C& c) const {
|
---|
| 227 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
|
---|
| 228 | }
|
---|
| 229 | };
|
---|
| 230 |
|
---|
| 231 | template <class Arg>
|
---|
| 232 | inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
|
---|
| 233 | break_const(const lambda_functor<Arg>& lf)
|
---|
| 234 | {
|
---|
| 235 | return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 |
|
---|
| 239 | template <class Arg>
|
---|
| 240 | inline const const_parameter_lambda_functor<lambda_functor<Arg> >
|
---|
| 241 | const_parameters(const lambda_functor<Arg>& lf)
|
---|
| 242 | {
|
---|
| 243 | return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | // make void ------------------------------------------------
|
---|
| 247 | // make_void( x ) turns a lambda functor x with some return type y into
|
---|
| 248 | // another lambda functor, which has a void return type
|
---|
| 249 | // when called, the original return type is discarded
|
---|
| 250 |
|
---|
| 251 | // we use this action. The action class will be called, which means that
|
---|
| 252 | // the wrapped lambda functor is evaluated, but we just don't do anything
|
---|
| 253 | // with the result.
|
---|
| 254 | struct voidifier_action {
|
---|
| 255 | template<class Ret, class A> static void apply(A&) {}
|
---|
| 256 | };
|
---|
| 257 |
|
---|
| 258 | template<class Args> struct return_type_N<voidifier_action, Args> {
|
---|
| 259 | typedef void type;
|
---|
| 260 | };
|
---|
| 261 |
|
---|
| 262 | template<class Arg1>
|
---|
| 263 | inline const
|
---|
| 264 | lambda_functor<
|
---|
| 265 | lambda_functor_base<
|
---|
| 266 | action<1, voidifier_action>,
|
---|
| 267 | tuple<lambda_functor<Arg1> >
|
---|
| 268 | >
|
---|
| 269 | >
|
---|
| 270 | make_void(const lambda_functor<Arg1>& a1) {
|
---|
| 271 | return
|
---|
| 272 | lambda_functor_base<
|
---|
| 273 | action<1, voidifier_action>,
|
---|
| 274 | tuple<lambda_functor<Arg1> >
|
---|
| 275 | >
|
---|
| 276 | (tuple<lambda_functor<Arg1> > (a1));
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | // for non-lambda functors, make_void does nothing
|
---|
| 280 | // (the argument gets evaluated immediately)
|
---|
| 281 |
|
---|
| 282 | template<class Arg1>
|
---|
| 283 | inline const
|
---|
| 284 | lambda_functor<
|
---|
| 285 | lambda_functor_base<do_nothing_action, null_type>
|
---|
| 286 | >
|
---|
| 287 | make_void(const Arg1& a1) {
|
---|
| 288 | return
|
---|
| 289 | lambda_functor_base<do_nothing_action, null_type>();
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | // std_functor -----------------------------------------------------
|
---|
| 293 |
|
---|
| 294 | // The STL uses the result_type typedef as the convention to let binders know
|
---|
| 295 | // the return type of a function object.
|
---|
| 296 | // LL uses the sig template.
|
---|
| 297 | // To let LL know that the function object has the result_type typedef
|
---|
| 298 | // defined, it can be wrapped with the std_functor function.
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | // Just inherit form the template parameter (the standard functor),
|
---|
| 302 | // and provide a sig template. So we have a class which is still the
|
---|
| 303 | // same functor + the sig template.
|
---|
| 304 |
|
---|
| 305 | template<class T>
|
---|
| 306 | struct result_type_to_sig : public T {
|
---|
| 307 | template<class Args> struct sig { typedef typename T::result_type type; };
|
---|
| 308 | result_type_to_sig(const T& t) : T(t) {}
|
---|
| 309 | };
|
---|
| 310 |
|
---|
| 311 | template<class F>
|
---|
| 312 | inline result_type_to_sig<F> std_functor(const F& f) { return f; }
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 | } // namespace lambda
|
---|
| 316 | } // namespace boost
|
---|
| 317 |
|
---|
| 318 | #endif
|
---|
| 319 |
|
---|
| 320 |
|
---|
| 321 |
|
---|
| 322 |
|
---|
| 323 |
|
---|
| 324 |
|
---|
| 325 |
|
---|