1 | // Boost Lambda Library ret.hpp -----------------------------------------
|
---|
2 |
|
---|
3 | // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
---|
4 | //
|
---|
5 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
6 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
7 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
8 | //
|
---|
9 | // For more information, see www.boost.org
|
---|
10 |
|
---|
11 |
|
---|
12 | #ifndef BOOST_LAMBDA_RET_HPP
|
---|
13 | #define BOOST_LAMBDA_RET_HPP
|
---|
14 |
|
---|
15 | namespace boost {
|
---|
16 | namespace lambda {
|
---|
17 |
|
---|
18 | // TODO:
|
---|
19 |
|
---|
20 | // Add specializations for function references for ret, protect and unlambda
|
---|
21 | // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
|
---|
22 | // for a function type.
|
---|
23 | // on the other hand unlambda(*foo) does work
|
---|
24 |
|
---|
25 |
|
---|
26 | // -- ret -------------------------
|
---|
27 | // the explicit return type template
|
---|
28 |
|
---|
29 | // TODO: It'd be nice to make ret a nop for other than lambda functors
|
---|
30 | // but causes an ambiguiyty with gcc (not with KCC), check what is the
|
---|
31 | // right interpretation.
|
---|
32 |
|
---|
33 | // // ret for others than lambda functors has no effect
|
---|
34 | // template <class U, class T>
|
---|
35 | // inline const T& ret(const T& t) { return t; }
|
---|
36 |
|
---|
37 |
|
---|
38 | template<class RET, class Arg>
|
---|
39 | inline const
|
---|
40 | lambda_functor<
|
---|
41 | lambda_functor_base<
|
---|
42 | explicit_return_type_action<RET>,
|
---|
43 | tuple<lambda_functor<Arg> >
|
---|
44 | >
|
---|
45 | >
|
---|
46 | ret(const lambda_functor<Arg>& a1)
|
---|
47 | {
|
---|
48 | return
|
---|
49 | lambda_functor_base<
|
---|
50 | explicit_return_type_action<RET>,
|
---|
51 | tuple<lambda_functor<Arg> >
|
---|
52 | >
|
---|
53 | (tuple<lambda_functor<Arg> >(a1));
|
---|
54 | }
|
---|
55 |
|
---|
56 | // protect ------------------
|
---|
57 |
|
---|
58 | // protecting others than lambda functors has no effect
|
---|
59 | template <class T>
|
---|
60 | inline const T& protect(const T& t) { return t; }
|
---|
61 |
|
---|
62 | template<class Arg>
|
---|
63 | inline const
|
---|
64 | lambda_functor<
|
---|
65 | lambda_functor_base<
|
---|
66 | protect_action,
|
---|
67 | tuple<lambda_functor<Arg> >
|
---|
68 | >
|
---|
69 | >
|
---|
70 | protect(const lambda_functor<Arg>& a1)
|
---|
71 | {
|
---|
72 | return
|
---|
73 | lambda_functor_base<
|
---|
74 | protect_action,
|
---|
75 | tuple<lambda_functor<Arg> >
|
---|
76 | >
|
---|
77 | (tuple<lambda_functor<Arg> >(a1));
|
---|
78 | }
|
---|
79 |
|
---|
80 | // -------------------------------------------------------------------
|
---|
81 |
|
---|
82 | // Hides the lambda functorness of a lambda functor.
|
---|
83 | // After this, the functor is immune to argument substitution, etc.
|
---|
84 | // This can be used, e.g. to make it safe to pass lambda functors as
|
---|
85 | // arguments to functions, which might use them as target functions
|
---|
86 |
|
---|
87 | // note, unlambda and protect are different things. Protect hides the lambda
|
---|
88 | // functor for one application, unlambda for good.
|
---|
89 |
|
---|
90 | template <class LambdaFunctor>
|
---|
91 | class non_lambda_functor
|
---|
92 | {
|
---|
93 | LambdaFunctor lf;
|
---|
94 | public:
|
---|
95 |
|
---|
96 | // This functor defines the result_type typedef.
|
---|
97 | // The result type must be deducible without knowing the arguments
|
---|
98 |
|
---|
99 | template <class SigArgs> struct sig {
|
---|
100 | typedef typename
|
---|
101 | LambdaFunctor::inherited::
|
---|
102 | template sig<typename SigArgs::tail_type>::type type;
|
---|
103 | };
|
---|
104 |
|
---|
105 | explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
106 |
|
---|
107 | typename LambdaFunctor::nullary_return_type
|
---|
108 | operator()() const {
|
---|
109 | return lf.template
|
---|
110 | call<typename LambdaFunctor::nullary_return_type>
|
---|
111 | (cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
---|
112 | }
|
---|
113 |
|
---|
114 | template<class A>
|
---|
115 | typename sig<tuple<const non_lambda_functor, A&> >::type
|
---|
116 | operator()(A& a) const {
|
---|
117 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
---|
118 | }
|
---|
119 |
|
---|
120 | template<class A, class B>
|
---|
121 | typename sig<tuple<const non_lambda_functor, A&, B&> >::type
|
---|
122 | operator()(A& a, B& b) const {
|
---|
123 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
|
---|
124 | }
|
---|
125 |
|
---|
126 | template<class A, class B, class C>
|
---|
127 | typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
|
---|
128 | operator()(A& a, B& b, C& c) const {
|
---|
129 | return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
|
---|
130 | }
|
---|
131 | };
|
---|
132 |
|
---|
133 | template <class Arg>
|
---|
134 | inline const Arg& unlambda(const Arg& a) { return a; }
|
---|
135 |
|
---|
136 | template <class Arg>
|
---|
137 | inline const non_lambda_functor<lambda_functor<Arg> >
|
---|
138 | unlambda(const lambda_functor<Arg>& a)
|
---|
139 | {
|
---|
140 | return non_lambda_functor<lambda_functor<Arg> >(a);
|
---|
141 | }
|
---|
142 |
|
---|
143 | // Due to a language restriction, lambda functors cannot be made to
|
---|
144 | // accept non-const rvalue arguments. Usually iterators do not return
|
---|
145 | // temporaries, but sometimes they do. That's why a workaround is provided.
|
---|
146 | // Note, that this potentially breaks const correctness, so be careful!
|
---|
147 |
|
---|
148 | // any lambda functor can be turned into a const_incorrect_lambda_functor
|
---|
149 | // The operator() takes arguments as consts and then casts constness
|
---|
150 | // away. So this breaks const correctness!!! but is a necessary workaround
|
---|
151 | // in some cases due to language limitations.
|
---|
152 | // Note, that this is not a lambda_functor anymore, so it can not be used
|
---|
153 | // as a sub lambda expression.
|
---|
154 |
|
---|
155 | template <class LambdaFunctor>
|
---|
156 | struct const_incorrect_lambda_functor {
|
---|
157 | LambdaFunctor lf;
|
---|
158 | public:
|
---|
159 |
|
---|
160 | explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
161 |
|
---|
162 | template <class SigArgs> struct sig {
|
---|
163 | typedef typename
|
---|
164 | LambdaFunctor::inherited::template
|
---|
165 | sig<typename SigArgs::tail_type>::type type;
|
---|
166 | };
|
---|
167 |
|
---|
168 | // The nullary case is not needed (no arguments, no parameter type problems)
|
---|
169 |
|
---|
170 | template<class A>
|
---|
171 | typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
|
---|
172 | operator()(const A& a) const {
|
---|
173 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
|
---|
174 | }
|
---|
175 |
|
---|
176 | template<class A, class B>
|
---|
177 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
|
---|
178 | operator()(const A& a, const B& b) const {
|
---|
179 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
|
---|
180 | }
|
---|
181 |
|
---|
182 | template<class A, class B, class C>
|
---|
183 | typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
|
---|
184 | operator()(const A& a, const B& b, const C& c) const {
|
---|
185 | return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
|
---|
186 | }
|
---|
187 | };
|
---|
188 |
|
---|
189 | // ------------------------------------------------------------------------
|
---|
190 | // any lambda functor can be turned into a const_parameter_lambda_functor
|
---|
191 | // The operator() takes arguments as const.
|
---|
192 | // This is useful if lambda functors are called with non-const rvalues.
|
---|
193 | // Note, that this is not a lambda_functor anymore, so it can not be used
|
---|
194 | // as a sub lambda expression.
|
---|
195 |
|
---|
196 | template <class LambdaFunctor>
|
---|
197 | struct const_parameter_lambda_functor {
|
---|
198 | LambdaFunctor lf;
|
---|
199 | public:
|
---|
200 |
|
---|
201 | explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
---|
202 |
|
---|
203 | template <class SigArgs> struct sig {
|
---|
204 | typedef typename
|
---|
205 | LambdaFunctor::inherited::template
|
---|
206 | sig<typename SigArgs::tail_type>::type type;
|
---|
207 | };
|
---|
208 |
|
---|
209 | // The nullary case is not needed: no arguments, no constness problems.
|
---|
210 |
|
---|
211 | template<class A>
|
---|
212 | typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
|
---|
213 | operator()(const A& a) const {
|
---|
214 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
---|
215 | }
|
---|
216 |
|
---|
217 | template<class A, class B>
|
---|
218 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
|
---|
219 | operator()(const A& a, const B& b) const {
|
---|
220 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
|
---|
221 | }
|
---|
222 |
|
---|
223 | template<class A, class B, class C>
|
---|
224 | typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
|
---|
225 | >::type
|
---|
226 | operator()(const A& a, const B& b, const C& c) const {
|
---|
227 | return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
|
---|
228 | }
|
---|
229 | };
|
---|
230 |
|
---|
231 | template <class Arg>
|
---|
232 | inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
|
---|
233 | break_const(const lambda_functor<Arg>& lf)
|
---|
234 | {
|
---|
235 | return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|
239 | template <class Arg>
|
---|
240 | inline const const_parameter_lambda_functor<lambda_functor<Arg> >
|
---|
241 | const_parameters(const lambda_functor<Arg>& lf)
|
---|
242 | {
|
---|
243 | return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
|
---|
244 | }
|
---|
245 |
|
---|
246 | // make void ------------------------------------------------
|
---|
247 | // make_void( x ) turns a lambda functor x with some return type y into
|
---|
248 | // another lambda functor, which has a void return type
|
---|
249 | // when called, the original return type is discarded
|
---|
250 |
|
---|
251 | // we use this action. The action class will be called, which means that
|
---|
252 | // the wrapped lambda functor is evaluated, but we just don't do anything
|
---|
253 | // with the result.
|
---|
254 | struct voidifier_action {
|
---|
255 | template<class Ret, class A> static void apply(A&) {}
|
---|
256 | };
|
---|
257 |
|
---|
258 | template<class Args> struct return_type_N<voidifier_action, Args> {
|
---|
259 | typedef void type;
|
---|
260 | };
|
---|
261 |
|
---|
262 | template<class Arg1>
|
---|
263 | inline const
|
---|
264 | lambda_functor<
|
---|
265 | lambda_functor_base<
|
---|
266 | action<1, voidifier_action>,
|
---|
267 | tuple<lambda_functor<Arg1> >
|
---|
268 | >
|
---|
269 | >
|
---|
270 | make_void(const lambda_functor<Arg1>& a1) {
|
---|
271 | return
|
---|
272 | lambda_functor_base<
|
---|
273 | action<1, voidifier_action>,
|
---|
274 | tuple<lambda_functor<Arg1> >
|
---|
275 | >
|
---|
276 | (tuple<lambda_functor<Arg1> > (a1));
|
---|
277 | }
|
---|
278 |
|
---|
279 | // for non-lambda functors, make_void does nothing
|
---|
280 | // (the argument gets evaluated immediately)
|
---|
281 |
|
---|
282 | template<class Arg1>
|
---|
283 | inline const
|
---|
284 | lambda_functor<
|
---|
285 | lambda_functor_base<do_nothing_action, null_type>
|
---|
286 | >
|
---|
287 | make_void(const Arg1& a1) {
|
---|
288 | return
|
---|
289 | lambda_functor_base<do_nothing_action, null_type>();
|
---|
290 | }
|
---|
291 |
|
---|
292 | // std_functor -----------------------------------------------------
|
---|
293 |
|
---|
294 | // The STL uses the result_type typedef as the convention to let binders know
|
---|
295 | // the return type of a function object.
|
---|
296 | // LL uses the sig template.
|
---|
297 | // To let LL know that the function object has the result_type typedef
|
---|
298 | // defined, it can be wrapped with the std_functor function.
|
---|
299 |
|
---|
300 |
|
---|
301 | // Just inherit form the template parameter (the standard functor),
|
---|
302 | // and provide a sig template. So we have a class which is still the
|
---|
303 | // same functor + the sig template.
|
---|
304 |
|
---|
305 | template<class T>
|
---|
306 | struct result_type_to_sig : public T {
|
---|
307 | template<class Args> struct sig { typedef typename T::result_type type; };
|
---|
308 | result_type_to_sig(const T& t) : T(t) {}
|
---|
309 | };
|
---|
310 |
|
---|
311 | template<class F>
|
---|
312 | inline result_type_to_sig<F> std_functor(const F& f) { return f; }
|
---|
313 |
|
---|
314 |
|
---|
315 | } // namespace lambda
|
---|
316 | } // namespace boost
|
---|
317 |
|
---|
318 | #endif
|
---|
319 |
|
---|
320 |
|
---|
321 |
|
---|
322 |
|
---|
323 |
|
---|
324 |
|
---|
325 |
|
---|