1 | // Boost Lambda Library -- if.hpp ------------------------------------------
|
---|
2 |
|
---|
3 | // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi)
|
---|
4 | // Copyright (C) 2000 Gary Powell (powellg@amazon.com)
|
---|
5 | // Copyright (C) 2001-2002 Joel de Guzman
|
---|
6 | //
|
---|
7 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
8 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
9 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
10 | //
|
---|
11 | // For more information, see www.boost.org
|
---|
12 |
|
---|
13 | // --------------------------------------------------------------------------
|
---|
14 |
|
---|
15 | #if !defined(BOOST_LAMBDA_IF_HPP)
|
---|
16 | #define BOOST_LAMBDA_IF_HPP
|
---|
17 |
|
---|
18 | #include "boost/lambda/core.hpp"
|
---|
19 |
|
---|
20 | // Arithmetic type promotion needed for if_then_else_return
|
---|
21 | #include "boost/lambda/detail/operator_actions.hpp"
|
---|
22 | #include "boost/lambda/detail/operator_return_type_traits.hpp"
|
---|
23 |
|
---|
24 | namespace boost {
|
---|
25 | namespace lambda {
|
---|
26 |
|
---|
27 | // -- if control construct actions ----------------------
|
---|
28 |
|
---|
29 | class ifthen_action {};
|
---|
30 | class ifthenelse_action {};
|
---|
31 | class ifthenelsereturn_action {};
|
---|
32 |
|
---|
33 | // Specialization for if_then.
|
---|
34 | template<class Args>
|
---|
35 | class
|
---|
36 | lambda_functor_base<ifthen_action, Args> {
|
---|
37 | public:
|
---|
38 | Args args;
|
---|
39 | template <class T> struct sig { typedef void type; };
|
---|
40 | public:
|
---|
41 | explicit lambda_functor_base(const Args& a) : args(a) {}
|
---|
42 |
|
---|
43 | template<class RET, CALL_TEMPLATE_ARGS>
|
---|
44 | RET call(CALL_FORMAL_ARGS) const {
|
---|
45 | if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
---|
46 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
---|
47 | }
|
---|
48 | };
|
---|
49 |
|
---|
50 | // If Then
|
---|
51 | template <class Arg1, class Arg2>
|
---|
52 | inline const
|
---|
53 | lambda_functor<
|
---|
54 | lambda_functor_base<
|
---|
55 | ifthen_action,
|
---|
56 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
---|
57 | >
|
---|
58 | >
|
---|
59 | if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
|
---|
60 | return
|
---|
61 | lambda_functor_base<
|
---|
62 | ifthen_action,
|
---|
63 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
---|
64 | >
|
---|
65 | ( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
|
---|
66 | }
|
---|
67 |
|
---|
68 |
|
---|
69 | // Specialization for if_then_else.
|
---|
70 | template<class Args>
|
---|
71 | class
|
---|
72 | lambda_functor_base<ifthenelse_action, Args> {
|
---|
73 | public:
|
---|
74 | Args args;
|
---|
75 | template <class T> struct sig { typedef void type; };
|
---|
76 | public:
|
---|
77 | explicit lambda_functor_base(const Args& a) : args(a) {}
|
---|
78 |
|
---|
79 | template<class RET, CALL_TEMPLATE_ARGS>
|
---|
80 | RET call(CALL_FORMAL_ARGS) const {
|
---|
81 | if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
|
---|
82 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
---|
83 | else
|
---|
84 | detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
---|
85 | }
|
---|
86 | };
|
---|
87 |
|
---|
88 |
|
---|
89 |
|
---|
90 | // If then else
|
---|
91 |
|
---|
92 | template <class Arg1, class Arg2, class Arg3>
|
---|
93 | inline const
|
---|
94 | lambda_functor<
|
---|
95 | lambda_functor_base<
|
---|
96 | ifthenelse_action,
|
---|
97 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
---|
98 | >
|
---|
99 | >
|
---|
100 | if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
|
---|
101 | const lambda_functor<Arg3>& a3) {
|
---|
102 | return
|
---|
103 | lambda_functor_base<
|
---|
104 | ifthenelse_action,
|
---|
105 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
---|
106 | >
|
---|
107 | (tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
|
---|
108 | (a1, a2, a3) );
|
---|
109 | }
|
---|
110 |
|
---|
111 | // Our version of operator?:()
|
---|
112 |
|
---|
113 | template <class Arg1, class Arg2, class Arg3>
|
---|
114 | inline const
|
---|
115 | lambda_functor<
|
---|
116 | lambda_functor_base<
|
---|
117 | other_action<ifthenelsereturn_action>,
|
---|
118 | tuple<lambda_functor<Arg1>,
|
---|
119 | typename const_copy_argument<Arg2>::type,
|
---|
120 | typename const_copy_argument<Arg3>::type>
|
---|
121 | >
|
---|
122 | >
|
---|
123 | if_then_else_return(const lambda_functor<Arg1>& a1,
|
---|
124 | const Arg2 & a2,
|
---|
125 | const Arg3 & a3) {
|
---|
126 | return
|
---|
127 | lambda_functor_base<
|
---|
128 | other_action<ifthenelsereturn_action>,
|
---|
129 | tuple<lambda_functor<Arg1>,
|
---|
130 | typename const_copy_argument<Arg2>::type,
|
---|
131 | typename const_copy_argument<Arg3>::type>
|
---|
132 | > ( tuple<lambda_functor<Arg1>,
|
---|
133 | typename const_copy_argument<Arg2>::type,
|
---|
134 | typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
|
---|
135 | }
|
---|
136 |
|
---|
137 | namespace detail {
|
---|
138 |
|
---|
139 | // return type specialization for conditional expression begins -----------
|
---|
140 | // start reading below and move upwards
|
---|
141 |
|
---|
142 | // PHASE 6:1
|
---|
143 | // check if A is conbertible to B and B to A
|
---|
144 | template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
|
---|
145 | struct return_type_2_ifthenelsereturn;
|
---|
146 |
|
---|
147 | // if A can be converted to B and vice versa -> ambiguous
|
---|
148 | template<int Phase, class A, class B>
|
---|
149 | struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
|
---|
150 | typedef
|
---|
151 | detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
---|
152 | // ambiguous type in conditional expression
|
---|
153 | };
|
---|
154 | // if A can be converted to B and vice versa and are of same type
|
---|
155 | template<int Phase, class A, class B>
|
---|
156 | struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
|
---|
157 | typedef A type;
|
---|
158 | };
|
---|
159 |
|
---|
160 |
|
---|
161 | // A can be converted to B
|
---|
162 | template<int Phase, class A, class B>
|
---|
163 | struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
|
---|
164 | typedef B type;
|
---|
165 | };
|
---|
166 |
|
---|
167 | // B can be converted to A
|
---|
168 | template<int Phase, class A, class B>
|
---|
169 | struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
|
---|
170 | typedef A type;
|
---|
171 | };
|
---|
172 |
|
---|
173 | // neither can be converted. Then we drop the potential references, and
|
---|
174 | // try again
|
---|
175 | template<class A, class B>
|
---|
176 | struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
|
---|
177 | // it is safe to add const, since the result will be an rvalue and thus
|
---|
178 | // const anyway. The const are needed eg. if the types
|
---|
179 | // are 'const int*' and 'void *'. The remaining type should be 'const void*'
|
---|
180 | typedef const typename boost::remove_reference<A>::type plainA;
|
---|
181 | typedef const typename boost::remove_reference<B>::type plainB;
|
---|
182 | // TODO: Add support for volatile ?
|
---|
183 |
|
---|
184 | typedef typename
|
---|
185 | return_type_2_ifthenelsereturn<
|
---|
186 | 2,
|
---|
187 | boost::is_convertible<plainA,plainB>::value,
|
---|
188 | boost::is_convertible<plainB,plainA>::value,
|
---|
189 | boost::is_same<plainA,plainB>::value,
|
---|
190 | plainA,
|
---|
191 | plainB>::type type;
|
---|
192 | };
|
---|
193 |
|
---|
194 | // PHASE 6:2
|
---|
195 | template<class A, class B>
|
---|
196 | struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
|
---|
197 | typedef
|
---|
198 | detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
|
---|
199 | // types_do_not_match_in_conditional_expression
|
---|
200 | };
|
---|
201 |
|
---|
202 |
|
---|
203 |
|
---|
204 | // PHASE 5: now we know that types are not arithmetic.
|
---|
205 | template<class A, class B>
|
---|
206 | struct non_numeric_types {
|
---|
207 | typedef typename
|
---|
208 | return_type_2_ifthenelsereturn<
|
---|
209 | 1, // phase 1
|
---|
210 | is_convertible<A,B>::value,
|
---|
211 | is_convertible<B,A>::value,
|
---|
212 | is_same<A,B>::value,
|
---|
213 | A,
|
---|
214 | B>::type type;
|
---|
215 | };
|
---|
216 |
|
---|
217 | // PHASE 4 :
|
---|
218 | // the base case covers arithmetic types with differing promote codes
|
---|
219 | // use the type deduction of arithmetic_actions
|
---|
220 | template<int CodeA, int CodeB, class A, class B>
|
---|
221 | struct arithmetic_or_not {
|
---|
222 | typedef typename
|
---|
223 | return_type_2<arithmetic_action<plus_action>, A, B>::type type;
|
---|
224 | // plus_action is just a random pick, has to be a concrete instance
|
---|
225 | };
|
---|
226 |
|
---|
227 | // this case covers the case of artihmetic types with the same promote codes.
|
---|
228 | // non numeric deduction is used since e.g. integral promotion is not
|
---|
229 | // performed with operator ?:
|
---|
230 | template<int CodeA, class A, class B>
|
---|
231 | struct arithmetic_or_not<CodeA, CodeA, A, B> {
|
---|
232 | typedef typename non_numeric_types<A, B>::type type;
|
---|
233 | };
|
---|
234 |
|
---|
235 | // if either A or B has promote code -1 it is not an arithmetic type
|
---|
236 | template<class A, class B>
|
---|
237 | struct arithmetic_or_not <-1, -1, A, B> {
|
---|
238 | typedef typename non_numeric_types<A, B>::type type;
|
---|
239 | };
|
---|
240 | template<int CodeB, class A, class B>
|
---|
241 | struct arithmetic_or_not <-1, CodeB, A, B> {
|
---|
242 | typedef typename non_numeric_types<A, B>::type type;
|
---|
243 | };
|
---|
244 | template<int CodeA, class A, class B>
|
---|
245 | struct arithmetic_or_not <CodeA, -1, A, B> {
|
---|
246 | typedef typename non_numeric_types<A, B>::type type;
|
---|
247 | };
|
---|
248 |
|
---|
249 |
|
---|
250 |
|
---|
251 |
|
---|
252 | // PHASE 3 : Are the types same?
|
---|
253 | // No, check if they are arithmetic or not
|
---|
254 | template <class A, class B>
|
---|
255 | struct same_or_not {
|
---|
256 | typedef typename detail::remove_reference_and_cv<A>::type plainA;
|
---|
257 | typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
---|
258 |
|
---|
259 | typedef typename
|
---|
260 | arithmetic_or_not<
|
---|
261 | detail::promote_code<plainA>::value,
|
---|
262 | detail::promote_code<plainB>::value,
|
---|
263 | A,
|
---|
264 | B>::type type;
|
---|
265 | };
|
---|
266 | // Yes, clear.
|
---|
267 | template <class A> struct same_or_not<A, A> {
|
---|
268 | typedef A type;
|
---|
269 | };
|
---|
270 |
|
---|
271 | } // detail
|
---|
272 |
|
---|
273 | // PHASE 2 : Perform first the potential array_to_pointer conversion
|
---|
274 | template<class A, class B>
|
---|
275 | struct return_type_2<other_action<ifthenelsereturn_action>, A, B> {
|
---|
276 |
|
---|
277 | typedef typename detail::array_to_pointer<A>::type A1;
|
---|
278 | typedef typename detail::array_to_pointer<B>::type B1;
|
---|
279 |
|
---|
280 | typedef typename
|
---|
281 | boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
|
---|
282 | };
|
---|
283 |
|
---|
284 | // PHASE 1 : Deduction is based on the second and third operand
|
---|
285 |
|
---|
286 |
|
---|
287 | // return type specialization for conditional expression ends -----------
|
---|
288 |
|
---|
289 |
|
---|
290 | // Specialization of lambda_functor_base for if_then_else_return.
|
---|
291 | template<class Args>
|
---|
292 | class
|
---|
293 | lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
|
---|
294 | public:
|
---|
295 | Args args;
|
---|
296 |
|
---|
297 | template <class SigArgs> struct sig {
|
---|
298 | private:
|
---|
299 | typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
|
---|
300 | typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
|
---|
301 | public:
|
---|
302 | typedef typename return_type_2<
|
---|
303 | other_action<ifthenelsereturn_action>, ret1, ret2
|
---|
304 | >::type type;
|
---|
305 | };
|
---|
306 |
|
---|
307 | public:
|
---|
308 | explicit lambda_functor_base(const Args& a) : args(a) {}
|
---|
309 |
|
---|
310 | template<class RET, CALL_TEMPLATE_ARGS>
|
---|
311 | RET call(CALL_FORMAL_ARGS) const {
|
---|
312 | return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
|
---|
313 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)
|
---|
314 | :
|
---|
315 | detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
|
---|
316 | }
|
---|
317 | };
|
---|
318 |
|
---|
319 | // The code below is from Joel de Guzman, some name changes etc.
|
---|
320 | // has been made.
|
---|
321 |
|
---|
322 | ///////////////////////////////////////////////////////////////////////////////
|
---|
323 | //
|
---|
324 | // if_then_else_composite
|
---|
325 | //
|
---|
326 | // This composite has two (2) forms:
|
---|
327 | //
|
---|
328 | // if_(condition)
|
---|
329 | // [
|
---|
330 | // statement
|
---|
331 | // ]
|
---|
332 | //
|
---|
333 | // and
|
---|
334 | //
|
---|
335 | // if_(condition)
|
---|
336 | // [
|
---|
337 | // true_statement
|
---|
338 | // ]
|
---|
339 | // .else_
|
---|
340 | // [
|
---|
341 | // false_statement
|
---|
342 | // ]
|
---|
343 | //
|
---|
344 | // where condition is an lambda_functor that evaluates to bool. If condition
|
---|
345 | // is true, the true_statement (again an lambda_functor) is executed
|
---|
346 | // otherwise, the false_statement (another lambda_functor) is executed. The
|
---|
347 | // result type of this is void. Note the trailing underscore after
|
---|
348 | // if_ and the the leading dot and the trailing underscore before
|
---|
349 | // and after .else_.
|
---|
350 | //
|
---|
351 | ///////////////////////////////////////////////////////////////////////////////
|
---|
352 | template <typename CondT, typename ThenT, typename ElseT>
|
---|
353 | struct if_then_else_composite {
|
---|
354 |
|
---|
355 | typedef if_then_else_composite<CondT, ThenT, ElseT> self_t;
|
---|
356 |
|
---|
357 | template <class SigArgs>
|
---|
358 | struct sig { typedef void type; };
|
---|
359 |
|
---|
360 | if_then_else_composite(
|
---|
361 | CondT const& cond_,
|
---|
362 | ThenT const& then_,
|
---|
363 | ElseT const& else__)
|
---|
364 | : cond(cond_), then(then_), else_(else__) {}
|
---|
365 |
|
---|
366 | template <class Ret, CALL_TEMPLATE_ARGS>
|
---|
367 | Ret call(CALL_FORMAL_ARGS) const
|
---|
368 | {
|
---|
369 | if (cond.internal_call(CALL_ACTUAL_ARGS))
|
---|
370 | then.internal_call(CALL_ACTUAL_ARGS);
|
---|
371 | else
|
---|
372 | else_.internal_call(CALL_ACTUAL_ARGS);
|
---|
373 | }
|
---|
374 |
|
---|
375 | CondT cond; ThenT then; ElseT else_; // lambda_functors
|
---|
376 | };
|
---|
377 |
|
---|
378 | //////////////////////////////////
|
---|
379 | template <typename CondT, typename ThenT>
|
---|
380 | struct else_gen {
|
---|
381 |
|
---|
382 | else_gen(CondT const& cond_, ThenT const& then_)
|
---|
383 | : cond(cond_), then(then_) {}
|
---|
384 |
|
---|
385 | template <typename ElseT>
|
---|
386 | lambda_functor<if_then_else_composite<CondT, ThenT,
|
---|
387 | typename as_lambda_functor<ElseT>::type> >
|
---|
388 | operator[](ElseT const& else_)
|
---|
389 | {
|
---|
390 | typedef if_then_else_composite<CondT, ThenT,
|
---|
391 | typename as_lambda_functor<ElseT>::type>
|
---|
392 | result;
|
---|
393 |
|
---|
394 | return result(cond, then, to_lambda_functor(else_));
|
---|
395 | }
|
---|
396 |
|
---|
397 | CondT cond; ThenT then;
|
---|
398 | };
|
---|
399 |
|
---|
400 | //////////////////////////////////
|
---|
401 | template <typename CondT, typename ThenT>
|
---|
402 | struct if_then_composite {
|
---|
403 |
|
---|
404 | template <class SigArgs>
|
---|
405 | struct sig { typedef void type; };
|
---|
406 |
|
---|
407 | if_then_composite(CondT const& cond_, ThenT const& then_)
|
---|
408 | : cond(cond_), then(then_), else_(cond, then) {}
|
---|
409 |
|
---|
410 | template <class Ret, CALL_TEMPLATE_ARGS>
|
---|
411 | Ret call(CALL_FORMAL_ARGS) const
|
---|
412 | {
|
---|
413 | if (cond.internal_call(CALL_ACTUAL_ARGS))
|
---|
414 | then.internal_call(CALL_ACTUAL_ARGS);
|
---|
415 | }
|
---|
416 |
|
---|
417 | CondT cond; ThenT then; // lambda_functors
|
---|
418 | else_gen<CondT, ThenT> else_;
|
---|
419 | };
|
---|
420 |
|
---|
421 | //////////////////////////////////
|
---|
422 | template <typename CondT>
|
---|
423 | struct if_gen {
|
---|
424 |
|
---|
425 | if_gen(CondT const& cond_)
|
---|
426 | : cond(cond_) {}
|
---|
427 |
|
---|
428 | template <typename ThenT>
|
---|
429 | lambda_functor<if_then_composite<
|
---|
430 | typename as_lambda_functor<CondT>::type,
|
---|
431 | typename as_lambda_functor<ThenT>::type> >
|
---|
432 | operator[](ThenT const& then) const
|
---|
433 | {
|
---|
434 | typedef if_then_composite<
|
---|
435 | typename as_lambda_functor<CondT>::type,
|
---|
436 | typename as_lambda_functor<ThenT>::type>
|
---|
437 | result;
|
---|
438 |
|
---|
439 | return result(
|
---|
440 | to_lambda_functor(cond),
|
---|
441 | to_lambda_functor(then));
|
---|
442 | }
|
---|
443 |
|
---|
444 | CondT cond;
|
---|
445 | };
|
---|
446 |
|
---|
447 | //////////////////////////////////
|
---|
448 | template <typename CondT>
|
---|
449 | inline if_gen<CondT>
|
---|
450 | if_(CondT const& cond)
|
---|
451 | {
|
---|
452 | return if_gen<CondT>(cond);
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 |
|
---|
457 | } // lambda
|
---|
458 | } // boost
|
---|
459 |
|
---|
460 | #endif // BOOST_LAMBDA_IF_HPP
|
---|
461 |
|
---|
462 |
|
---|