[857] | 1 | // boost asinh.hpp header file
|
---|
| 2 |
|
---|
| 3 | // (C) Copyright Eric Ford 2001 & Hubert Holin.
|
---|
| 4 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
| 5 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
| 6 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 7 |
|
---|
| 8 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
| 9 |
|
---|
| 10 | #ifndef BOOST_ACOSH_HPP
|
---|
| 11 | #define BOOST_ACOSH_HPP
|
---|
| 12 |
|
---|
| 13 |
|
---|
| 14 | #include <cmath>
|
---|
| 15 | #include <limits>
|
---|
| 16 | #include <string>
|
---|
| 17 | #include <stdexcept>
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | #include <boost/config.hpp>
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | // This is the inverse of the hyperbolic cosine function.
|
---|
| 24 |
|
---|
| 25 | namespace boost
|
---|
| 26 | {
|
---|
| 27 | namespace math
|
---|
| 28 | {
|
---|
| 29 | #if defined(__GNUC__) && (__GNUC__ < 3)
|
---|
| 30 | // gcc 2.x ignores function scope using declarations,
|
---|
| 31 | // put them in the scope of the enclosing namespace instead:
|
---|
| 32 |
|
---|
| 33 | using ::std::abs;
|
---|
| 34 | using ::std::sqrt;
|
---|
| 35 | using ::std::log;
|
---|
| 36 |
|
---|
| 37 | using ::std::numeric_limits;
|
---|
| 38 | #endif
|
---|
| 39 |
|
---|
| 40 | #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
---|
| 41 | // This is the main fare
|
---|
| 42 |
|
---|
| 43 | template<typename T>
|
---|
| 44 | inline T acosh(const T x)
|
---|
| 45 | {
|
---|
| 46 | using ::std::abs;
|
---|
| 47 | using ::std::sqrt;
|
---|
| 48 | using ::std::log;
|
---|
| 49 |
|
---|
| 50 | using ::std::numeric_limits;
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | T const one = static_cast<T>(1);
|
---|
| 54 | T const two = static_cast<T>(2);
|
---|
| 55 |
|
---|
| 56 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
| 57 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
| 58 | static T const upper_taylor_2_bound = one/taylor_2_bound;
|
---|
| 59 |
|
---|
| 60 | if (x < one)
|
---|
| 61 | {
|
---|
| 62 | if (numeric_limits<T>::has_quiet_NaN)
|
---|
| 63 | {
|
---|
| 64 | return(numeric_limits<T>::quiet_NaN());
|
---|
| 65 | }
|
---|
| 66 | else
|
---|
| 67 | {
|
---|
| 68 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
| 69 | ::std::domain_error bad_argument(error_reporting);
|
---|
| 70 |
|
---|
| 71 | throw(bad_argument);
|
---|
| 72 | }
|
---|
| 73 | }
|
---|
| 74 | else if (x >= taylor_n_bound)
|
---|
| 75 | {
|
---|
| 76 | if (x > upper_taylor_2_bound)
|
---|
| 77 | {
|
---|
| 78 | // approximation by laurent series in 1/x at 0+ order from -1 to 0
|
---|
| 79 | return( log( x*two) );
|
---|
| 80 | }
|
---|
| 81 | else
|
---|
| 82 | {
|
---|
| 83 | return( log( x + sqrt(x*x-one) ) );
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | else
|
---|
| 87 | {
|
---|
| 88 | T y = sqrt(x-one);
|
---|
| 89 |
|
---|
| 90 | // approximation by taylor series in y at 0 up to order 2
|
---|
| 91 | T result = y;
|
---|
| 92 |
|
---|
| 93 | if (y >= taylor_2_bound)
|
---|
| 94 | {
|
---|
| 95 | T y3 = y*y*y;
|
---|
| 96 |
|
---|
| 97 | // approximation by taylor series in y at 0 up to order 4
|
---|
| 98 | result -= y3/static_cast<T>(12);
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | return(sqrt(static_cast<T>(2))*result);
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 | #else
|
---|
| 105 | // These are implementation details (for main fare see below)
|
---|
| 106 |
|
---|
| 107 | namespace detail
|
---|
| 108 | {
|
---|
| 109 | template <
|
---|
| 110 | typename T,
|
---|
| 111 | bool QuietNanSupported
|
---|
| 112 | >
|
---|
| 113 | struct acosh_helper2_t
|
---|
| 114 | {
|
---|
| 115 | static T get_NaN()
|
---|
| 116 | {
|
---|
| 117 | return(::std::numeric_limits<T>::quiet_NaN());
|
---|
| 118 | }
|
---|
| 119 | }; // boost::detail::acosh_helper2_t
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | template<typename T>
|
---|
| 123 | struct acosh_helper2_t<T, false>
|
---|
| 124 | {
|
---|
| 125 | static T get_NaN()
|
---|
| 126 | {
|
---|
| 127 | ::std::string error_reporting("Argument to acosh is greater than or equal to +1!");
|
---|
| 128 | ::std::domain_error bad_argument(error_reporting);
|
---|
| 129 |
|
---|
| 130 | throw(bad_argument);
|
---|
| 131 | }
|
---|
| 132 | }; // boost::detail::acosh_helper2_t
|
---|
| 133 |
|
---|
| 134 | } // boost::detail
|
---|
| 135 |
|
---|
| 136 |
|
---|
| 137 | // This is the main fare
|
---|
| 138 |
|
---|
| 139 | template<typename T>
|
---|
| 140 | inline T acosh(const T x)
|
---|
| 141 | {
|
---|
| 142 | using ::std::abs;
|
---|
| 143 | using ::std::sqrt;
|
---|
| 144 | using ::std::log;
|
---|
| 145 |
|
---|
| 146 | using ::std::numeric_limits;
|
---|
| 147 |
|
---|
| 148 | typedef detail::acosh_helper2_t<T, std::numeric_limits<T>::has_quiet_NaN> helper2_type;
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | T const one = static_cast<T>(1);
|
---|
| 152 | T const two = static_cast<T>(2);
|
---|
| 153 |
|
---|
| 154 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
| 155 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
| 156 | static T const upper_taylor_2_bound = one/taylor_2_bound;
|
---|
| 157 |
|
---|
| 158 | if (x < one)
|
---|
| 159 | {
|
---|
| 160 | return(helper2_type::get_NaN());
|
---|
| 161 | }
|
---|
| 162 | else if (x >= taylor_n_bound)
|
---|
| 163 | {
|
---|
| 164 | if (x > upper_taylor_2_bound)
|
---|
| 165 | {
|
---|
| 166 | // approximation by laurent series in 1/x at 0+ order from -1 to 0
|
---|
| 167 | return( log( x*two) );
|
---|
| 168 | }
|
---|
| 169 | else
|
---|
| 170 | {
|
---|
| 171 | return( log( x + sqrt(x*x-one) ) );
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 | else
|
---|
| 175 | {
|
---|
| 176 | T y = sqrt(x-one);
|
---|
| 177 |
|
---|
| 178 | // approximation by taylor series in y at 0 up to order 2
|
---|
| 179 | T result = y;
|
---|
| 180 |
|
---|
| 181 | if (y >= taylor_2_bound)
|
---|
| 182 | {
|
---|
| 183 | T y3 = y*y*y;
|
---|
| 184 |
|
---|
| 185 | // approximation by taylor series in y at 0 up to order 4
|
---|
| 186 | result -= y3/static_cast<T>(12);
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | return(sqrt(static_cast<T>(2))*result);
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 | #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | #endif /* BOOST_ACOSH_HPP */
|
---|
| 197 |
|
---|
| 198 |
|
---|