// boost asinh.hpp header file // (C) Copyright Eric Ford 2001 & Hubert Holin. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_ACOSH_HPP #define BOOST_ACOSH_HPP #include #include #include #include #include // This is the inverse of the hyperbolic cosine function. namespace boost { namespace math { #if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; #endif #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) // This is the main fare template inline T acosh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; T const one = static_cast(1); T const two = static_cast(2); static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); static T const upper_taylor_2_bound = one/taylor_2_bound; if (x < one) { if (numeric_limits::has_quiet_NaN) { return(numeric_limits::quiet_NaN()); } else { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } } else if (x >= taylor_n_bound) { if (x > upper_taylor_2_bound) { // approximation by laurent series in 1/x at 0+ order from -1 to 0 return( log( x*two) ); } else { return( log( x + sqrt(x*x-one) ) ); } } else { T y = sqrt(x-one); // approximation by taylor series in y at 0 up to order 2 T result = y; if (y >= taylor_2_bound) { T y3 = y*y*y; // approximation by taylor series in y at 0 up to order 4 result -= y3/static_cast(12); } return(sqrt(static_cast(2))*result); } } #else // These are implementation details (for main fare see below) namespace detail { template < typename T, bool QuietNanSupported > struct acosh_helper2_t { static T get_NaN() { return(::std::numeric_limits::quiet_NaN()); } }; // boost::detail::acosh_helper2_t template struct acosh_helper2_t { static T get_NaN() { ::std::string error_reporting("Argument to acosh is greater than or equal to +1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } }; // boost::detail::acosh_helper2_t } // boost::detail // This is the main fare template inline T acosh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; typedef detail::acosh_helper2_t::has_quiet_NaN> helper2_type; T const one = static_cast(1); T const two = static_cast(2); static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); static T const upper_taylor_2_bound = one/taylor_2_bound; if (x < one) { return(helper2_type::get_NaN()); } else if (x >= taylor_n_bound) { if (x > upper_taylor_2_bound) { // approximation by laurent series in 1/x at 0+ order from -1 to 0 return( log( x*two) ); } else { return( log( x + sqrt(x*x-one) ) ); } } else { T y = sqrt(x-one); // approximation by taylor series in y at 0 up to order 2 T result = y; if (y >= taylor_2_bound) { T y3 = y*y*y; // approximation by taylor series in y at 0 up to order 4 result -= y3/static_cast(12); } return(sqrt(static_cast(2))*result); } } #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ } } #endif /* BOOST_ACOSH_HPP */