[857] | 1 | // boost asinh.hpp header file
|
---|
| 2 |
|
---|
| 3 | // (C) Copyright Eric Ford & Hubert Holin 2001.
|
---|
| 4 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
| 5 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
| 6 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 7 |
|
---|
| 8 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
| 9 |
|
---|
| 10 | #ifndef BOOST_ASINH_HPP
|
---|
| 11 | #define BOOST_ASINH_HPP
|
---|
| 12 |
|
---|
| 13 |
|
---|
| 14 | #include <cmath>
|
---|
| 15 | #include <limits>
|
---|
| 16 | #include <string>
|
---|
| 17 | #include <stdexcept>
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | #include <boost/config.hpp>
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | // This is the inverse of the hyperbolic sine function.
|
---|
| 24 |
|
---|
| 25 | namespace boost
|
---|
| 26 | {
|
---|
| 27 | namespace math
|
---|
| 28 | {
|
---|
| 29 | #if defined(__GNUC__) && (__GNUC__ < 3)
|
---|
| 30 | // gcc 2.x ignores function scope using declarations,
|
---|
| 31 | // put them in the scope of the enclosing namespace instead:
|
---|
| 32 |
|
---|
| 33 | using ::std::abs;
|
---|
| 34 | using ::std::sqrt;
|
---|
| 35 | using ::std::log;
|
---|
| 36 |
|
---|
| 37 | using ::std::numeric_limits;
|
---|
| 38 | #endif
|
---|
| 39 |
|
---|
| 40 | template<typename T>
|
---|
| 41 | inline T asinh(const T x)
|
---|
| 42 | {
|
---|
| 43 | using ::std::abs;
|
---|
| 44 | using ::std::sqrt;
|
---|
| 45 | using ::std::log;
|
---|
| 46 |
|
---|
| 47 | using ::std::numeric_limits;
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | T const one = static_cast<T>(1);
|
---|
| 51 | T const two = static_cast<T>(2);
|
---|
| 52 |
|
---|
| 53 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
| 54 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
| 55 | static T const upper_taylor_2_bound = one/taylor_2_bound;
|
---|
| 56 | static T const upper_taylor_n_bound = one/taylor_n_bound;
|
---|
| 57 |
|
---|
| 58 | if (x >= +taylor_n_bound)
|
---|
| 59 | {
|
---|
| 60 | if (x > upper_taylor_n_bound)
|
---|
| 61 | {
|
---|
| 62 | if (x > upper_taylor_2_bound)
|
---|
| 63 | {
|
---|
| 64 | // approximation by laurent series in 1/x at 0+ order from -1 to 0
|
---|
| 65 | return( log( x * two) );
|
---|
| 66 | }
|
---|
| 67 | else
|
---|
| 68 | {
|
---|
| 69 | // approximation by laurent series in 1/x at 0+ order from -1 to 1
|
---|
| 70 | return( log( x*two + (one/(x*two)) ) );
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | else
|
---|
| 74 | {
|
---|
| 75 | return( log( x + sqrt(x*x+one) ) );
|
---|
| 76 | }
|
---|
| 77 | }
|
---|
| 78 | else if (x <= -taylor_n_bound)
|
---|
| 79 | {
|
---|
| 80 | return(-asinh(-x));
|
---|
| 81 | }
|
---|
| 82 | else
|
---|
| 83 | {
|
---|
| 84 | // approximation by taylor series in x at 0 up to order 2
|
---|
| 85 | T result = x;
|
---|
| 86 |
|
---|
| 87 | if (abs(x) >= taylor_2_bound)
|
---|
| 88 | {
|
---|
| 89 | T x3 = x*x*x;
|
---|
| 90 |
|
---|
| 91 | // approximation by taylor series in x at 0 up to order 4
|
---|
| 92 | result -= x3/static_cast<T>(6);
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | return(result);
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | #endif /* BOOST_ASINH_HPP */
|
---|