1 | // boost asinh.hpp header file
|
---|
2 |
|
---|
3 | // (C) Copyright Eric Ford & Hubert Holin 2001.
|
---|
4 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
5 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
6 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
7 |
|
---|
8 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
9 |
|
---|
10 | #ifndef BOOST_ASINH_HPP
|
---|
11 | #define BOOST_ASINH_HPP
|
---|
12 |
|
---|
13 |
|
---|
14 | #include <cmath>
|
---|
15 | #include <limits>
|
---|
16 | #include <string>
|
---|
17 | #include <stdexcept>
|
---|
18 |
|
---|
19 |
|
---|
20 | #include <boost/config.hpp>
|
---|
21 |
|
---|
22 |
|
---|
23 | // This is the inverse of the hyperbolic sine function.
|
---|
24 |
|
---|
25 | namespace boost
|
---|
26 | {
|
---|
27 | namespace math
|
---|
28 | {
|
---|
29 | #if defined(__GNUC__) && (__GNUC__ < 3)
|
---|
30 | // gcc 2.x ignores function scope using declarations,
|
---|
31 | // put them in the scope of the enclosing namespace instead:
|
---|
32 |
|
---|
33 | using ::std::abs;
|
---|
34 | using ::std::sqrt;
|
---|
35 | using ::std::log;
|
---|
36 |
|
---|
37 | using ::std::numeric_limits;
|
---|
38 | #endif
|
---|
39 |
|
---|
40 | template<typename T>
|
---|
41 | inline T asinh(const T x)
|
---|
42 | {
|
---|
43 | using ::std::abs;
|
---|
44 | using ::std::sqrt;
|
---|
45 | using ::std::log;
|
---|
46 |
|
---|
47 | using ::std::numeric_limits;
|
---|
48 |
|
---|
49 |
|
---|
50 | T const one = static_cast<T>(1);
|
---|
51 | T const two = static_cast<T>(2);
|
---|
52 |
|
---|
53 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
54 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
55 | static T const upper_taylor_2_bound = one/taylor_2_bound;
|
---|
56 | static T const upper_taylor_n_bound = one/taylor_n_bound;
|
---|
57 |
|
---|
58 | if (x >= +taylor_n_bound)
|
---|
59 | {
|
---|
60 | if (x > upper_taylor_n_bound)
|
---|
61 | {
|
---|
62 | if (x > upper_taylor_2_bound)
|
---|
63 | {
|
---|
64 | // approximation by laurent series in 1/x at 0+ order from -1 to 0
|
---|
65 | return( log( x * two) );
|
---|
66 | }
|
---|
67 | else
|
---|
68 | {
|
---|
69 | // approximation by laurent series in 1/x at 0+ order from -1 to 1
|
---|
70 | return( log( x*two + (one/(x*two)) ) );
|
---|
71 | }
|
---|
72 | }
|
---|
73 | else
|
---|
74 | {
|
---|
75 | return( log( x + sqrt(x*x+one) ) );
|
---|
76 | }
|
---|
77 | }
|
---|
78 | else if (x <= -taylor_n_bound)
|
---|
79 | {
|
---|
80 | return(-asinh(-x));
|
---|
81 | }
|
---|
82 | else
|
---|
83 | {
|
---|
84 | // approximation by taylor series in x at 0 up to order 2
|
---|
85 | T result = x;
|
---|
86 |
|
---|
87 | if (abs(x) >= taylor_2_bound)
|
---|
88 | {
|
---|
89 | T x3 = x*x*x;
|
---|
90 |
|
---|
91 | // approximation by taylor series in x at 0 up to order 4
|
---|
92 | result -= x3/static_cast<T>(6);
|
---|
93 | }
|
---|
94 |
|
---|
95 | return(result);
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 | #endif /* BOOST_ASINH_HPP */
|
---|