[857] | 1 | // boost atanh.hpp header file
|
---|
| 2 |
|
---|
| 3 | // (C) Copyright Hubert Holin 2001.
|
---|
| 4 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
| 5 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
| 6 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 7 |
|
---|
| 8 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
| 9 |
|
---|
| 10 | #ifndef BOOST_ATANH_HPP
|
---|
| 11 | #define BOOST_ATANH_HPP
|
---|
| 12 |
|
---|
| 13 |
|
---|
| 14 | #include <cmath>
|
---|
| 15 | #include <limits>
|
---|
| 16 | #include <string>
|
---|
| 17 | #include <stdexcept>
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | #include <boost/config.hpp>
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | // This is the inverse of the hyperbolic tangent function.
|
---|
| 24 |
|
---|
| 25 | namespace boost
|
---|
| 26 | {
|
---|
| 27 | namespace math
|
---|
| 28 | {
|
---|
| 29 | #if defined(__GNUC__) && (__GNUC__ < 3)
|
---|
| 30 | // gcc 2.x ignores function scope using declarations,
|
---|
| 31 | // put them in the scope of the enclosing namespace instead:
|
---|
| 32 |
|
---|
| 33 | using ::std::abs;
|
---|
| 34 | using ::std::sqrt;
|
---|
| 35 | using ::std::log;
|
---|
| 36 |
|
---|
| 37 | using ::std::numeric_limits;
|
---|
| 38 | #endif
|
---|
| 39 |
|
---|
| 40 | #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
---|
| 41 | // This is the main fare
|
---|
| 42 |
|
---|
| 43 | template<typename T>
|
---|
| 44 | inline T atanh(const T x)
|
---|
| 45 | {
|
---|
| 46 | using ::std::abs;
|
---|
| 47 | using ::std::sqrt;
|
---|
| 48 | using ::std::log;
|
---|
| 49 |
|
---|
| 50 | using ::std::numeric_limits;
|
---|
| 51 |
|
---|
| 52 | T const one = static_cast<T>(1);
|
---|
| 53 | T const two = static_cast<T>(2);
|
---|
| 54 |
|
---|
| 55 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
| 56 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
| 57 |
|
---|
| 58 | if (x < -one)
|
---|
| 59 | {
|
---|
| 60 | if (numeric_limits<T>::has_quiet_NaN)
|
---|
| 61 | {
|
---|
| 62 | return(numeric_limits<T>::quiet_NaN());
|
---|
| 63 | }
|
---|
| 64 | else
|
---|
| 65 | {
|
---|
| 66 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
| 67 | ::std::domain_error bad_argument(error_reporting);
|
---|
| 68 |
|
---|
| 69 | throw(bad_argument);
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 | else if (x < -one+numeric_limits<T>::epsilon())
|
---|
| 73 | {
|
---|
| 74 | if (numeric_limits<T>::has_infinity)
|
---|
| 75 | {
|
---|
| 76 | return(-numeric_limits<T>::infinity());
|
---|
| 77 | }
|
---|
| 78 | else
|
---|
| 79 | {
|
---|
| 80 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
|
---|
| 81 | ::std::out_of_range bad_argument(error_reporting);
|
---|
| 82 |
|
---|
| 83 | throw(bad_argument);
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | else if (x > +one-numeric_limits<T>::epsilon())
|
---|
| 87 | {
|
---|
| 88 | if (numeric_limits<T>::has_infinity)
|
---|
| 89 | {
|
---|
| 90 | return(+numeric_limits<T>::infinity());
|
---|
| 91 | }
|
---|
| 92 | else
|
---|
| 93 | {
|
---|
| 94 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
|
---|
| 95 | ::std::out_of_range bad_argument(error_reporting);
|
---|
| 96 |
|
---|
| 97 | throw(bad_argument);
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 | else if (x > +one)
|
---|
| 101 | {
|
---|
| 102 | if (numeric_limits<T>::has_quiet_NaN)
|
---|
| 103 | {
|
---|
| 104 | return(numeric_limits<T>::quiet_NaN());
|
---|
| 105 | }
|
---|
| 106 | else
|
---|
| 107 | {
|
---|
| 108 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
| 109 | ::std::domain_error bad_argument(error_reporting);
|
---|
| 110 |
|
---|
| 111 | throw(bad_argument);
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 | else if (abs(x) >= taylor_n_bound)
|
---|
| 115 | {
|
---|
| 116 | return(log( (one + x) / (one - x) ) / two);
|
---|
| 117 | }
|
---|
| 118 | else
|
---|
| 119 | {
|
---|
| 120 | // approximation by taylor series in x at 0 up to order 2
|
---|
| 121 | T result = x;
|
---|
| 122 |
|
---|
| 123 | if (abs(x) >= taylor_2_bound)
|
---|
| 124 | {
|
---|
| 125 | T x3 = x*x*x;
|
---|
| 126 |
|
---|
| 127 | // approximation by taylor series in x at 0 up to order 4
|
---|
| 128 | result += x3/static_cast<T>(3);
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | return(result);
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | #else
|
---|
| 135 | // These are implementation details (for main fare see below)
|
---|
| 136 |
|
---|
| 137 | namespace detail
|
---|
| 138 | {
|
---|
| 139 | template <
|
---|
| 140 | typename T,
|
---|
| 141 | bool InfinitySupported
|
---|
| 142 | >
|
---|
| 143 | struct atanh_helper1_t
|
---|
| 144 | {
|
---|
| 145 | static T get_pos_infinity()
|
---|
| 146 | {
|
---|
| 147 | return(+::std::numeric_limits<T>::infinity());
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | static T get_neg_infinity()
|
---|
| 151 | {
|
---|
| 152 | return(-::std::numeric_limits<T>::infinity());
|
---|
| 153 | }
|
---|
| 154 | }; // boost::math::detail::atanh_helper1_t
|
---|
| 155 |
|
---|
| 156 |
|
---|
| 157 | template<typename T>
|
---|
| 158 | struct atanh_helper1_t<T, false>
|
---|
| 159 | {
|
---|
| 160 | static T get_pos_infinity()
|
---|
| 161 | {
|
---|
| 162 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
|
---|
| 163 | ::std::out_of_range bad_argument(error_reporting);
|
---|
| 164 |
|
---|
| 165 | throw(bad_argument);
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | static T get_neg_infinity()
|
---|
| 169 | {
|
---|
| 170 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
|
---|
| 171 | ::std::out_of_range bad_argument(error_reporting);
|
---|
| 172 |
|
---|
| 173 | throw(bad_argument);
|
---|
| 174 | }
|
---|
| 175 | }; // boost::math::detail::atanh_helper1_t
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | template <
|
---|
| 179 | typename T,
|
---|
| 180 | bool QuietNanSupported
|
---|
| 181 | >
|
---|
| 182 | struct atanh_helper2_t
|
---|
| 183 | {
|
---|
| 184 | static T get_NaN()
|
---|
| 185 | {
|
---|
| 186 | return(::std::numeric_limits<T>::quiet_NaN());
|
---|
| 187 | }
|
---|
| 188 | }; // boost::detail::atanh_helper2_t
|
---|
| 189 |
|
---|
| 190 |
|
---|
| 191 | template<typename T>
|
---|
| 192 | struct atanh_helper2_t<T, false>
|
---|
| 193 | {
|
---|
| 194 | static T get_NaN()
|
---|
| 195 | {
|
---|
| 196 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
| 197 | ::std::domain_error bad_argument(error_reporting);
|
---|
| 198 |
|
---|
| 199 | throw(bad_argument);
|
---|
| 200 | }
|
---|
| 201 | }; // boost::detail::atanh_helper2_t
|
---|
| 202 | } // boost::detail
|
---|
| 203 |
|
---|
| 204 |
|
---|
| 205 | // This is the main fare
|
---|
| 206 |
|
---|
| 207 | template<typename T>
|
---|
| 208 | inline T atanh(const T x)
|
---|
| 209 | {
|
---|
| 210 | using ::std::abs;
|
---|
| 211 | using ::std::sqrt;
|
---|
| 212 | using ::std::log;
|
---|
| 213 |
|
---|
| 214 | using ::std::numeric_limits;
|
---|
| 215 |
|
---|
| 216 | typedef detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity> helper1_type;
|
---|
| 217 | typedef detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN> helper2_type;
|
---|
| 218 |
|
---|
| 219 |
|
---|
| 220 | T const one = static_cast<T>(1);
|
---|
| 221 | T const two = static_cast<T>(2);
|
---|
| 222 |
|
---|
| 223 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
| 224 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
| 225 |
|
---|
| 226 | if (x < -one)
|
---|
| 227 | {
|
---|
| 228 | return(helper2_type::get_NaN());
|
---|
| 229 | }
|
---|
| 230 | else if (x < -one+numeric_limits<T>::epsilon())
|
---|
| 231 | {
|
---|
| 232 | return(helper1_type::get_neg_infinity());
|
---|
| 233 | }
|
---|
| 234 | else if (x > +one-numeric_limits<T>::epsilon())
|
---|
| 235 | {
|
---|
| 236 | return(helper1_type::get_pos_infinity());
|
---|
| 237 | }
|
---|
| 238 | else if (x > +one)
|
---|
| 239 | {
|
---|
| 240 | return(helper2_type::get_NaN());
|
---|
| 241 | }
|
---|
| 242 | else if (abs(x) >= taylor_n_bound)
|
---|
| 243 | {
|
---|
| 244 | return(log( (one + x) / (one - x) ) / two);
|
---|
| 245 | }
|
---|
| 246 | else
|
---|
| 247 | {
|
---|
| 248 | // approximation by taylor series in x at 0 up to order 2
|
---|
| 249 | T result = x;
|
---|
| 250 |
|
---|
| 251 | if (abs(x) >= taylor_2_bound)
|
---|
| 252 | {
|
---|
| 253 | T x3 = x*x*x;
|
---|
| 254 |
|
---|
| 255 | // approximation by taylor series in x at 0 up to order 4
|
---|
| 256 | result += x3/static_cast<T>(3);
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | return(result);
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | #endif /* BOOST_ATANH_HPP */
|
---|
| 267 |
|
---|