1 | // boost atanh.hpp header file
|
---|
2 |
|
---|
3 | // (C) Copyright Hubert Holin 2001.
|
---|
4 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
5 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
6 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
7 |
|
---|
8 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
9 |
|
---|
10 | #ifndef BOOST_ATANH_HPP
|
---|
11 | #define BOOST_ATANH_HPP
|
---|
12 |
|
---|
13 |
|
---|
14 | #include <cmath>
|
---|
15 | #include <limits>
|
---|
16 | #include <string>
|
---|
17 | #include <stdexcept>
|
---|
18 |
|
---|
19 |
|
---|
20 | #include <boost/config.hpp>
|
---|
21 |
|
---|
22 |
|
---|
23 | // This is the inverse of the hyperbolic tangent function.
|
---|
24 |
|
---|
25 | namespace boost
|
---|
26 | {
|
---|
27 | namespace math
|
---|
28 | {
|
---|
29 | #if defined(__GNUC__) && (__GNUC__ < 3)
|
---|
30 | // gcc 2.x ignores function scope using declarations,
|
---|
31 | // put them in the scope of the enclosing namespace instead:
|
---|
32 |
|
---|
33 | using ::std::abs;
|
---|
34 | using ::std::sqrt;
|
---|
35 | using ::std::log;
|
---|
36 |
|
---|
37 | using ::std::numeric_limits;
|
---|
38 | #endif
|
---|
39 |
|
---|
40 | #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
---|
41 | // This is the main fare
|
---|
42 |
|
---|
43 | template<typename T>
|
---|
44 | inline T atanh(const T x)
|
---|
45 | {
|
---|
46 | using ::std::abs;
|
---|
47 | using ::std::sqrt;
|
---|
48 | using ::std::log;
|
---|
49 |
|
---|
50 | using ::std::numeric_limits;
|
---|
51 |
|
---|
52 | T const one = static_cast<T>(1);
|
---|
53 | T const two = static_cast<T>(2);
|
---|
54 |
|
---|
55 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
56 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
57 |
|
---|
58 | if (x < -one)
|
---|
59 | {
|
---|
60 | if (numeric_limits<T>::has_quiet_NaN)
|
---|
61 | {
|
---|
62 | return(numeric_limits<T>::quiet_NaN());
|
---|
63 | }
|
---|
64 | else
|
---|
65 | {
|
---|
66 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
67 | ::std::domain_error bad_argument(error_reporting);
|
---|
68 |
|
---|
69 | throw(bad_argument);
|
---|
70 | }
|
---|
71 | }
|
---|
72 | else if (x < -one+numeric_limits<T>::epsilon())
|
---|
73 | {
|
---|
74 | if (numeric_limits<T>::has_infinity)
|
---|
75 | {
|
---|
76 | return(-numeric_limits<T>::infinity());
|
---|
77 | }
|
---|
78 | else
|
---|
79 | {
|
---|
80 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
|
---|
81 | ::std::out_of_range bad_argument(error_reporting);
|
---|
82 |
|
---|
83 | throw(bad_argument);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | else if (x > +one-numeric_limits<T>::epsilon())
|
---|
87 | {
|
---|
88 | if (numeric_limits<T>::has_infinity)
|
---|
89 | {
|
---|
90 | return(+numeric_limits<T>::infinity());
|
---|
91 | }
|
---|
92 | else
|
---|
93 | {
|
---|
94 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
|
---|
95 | ::std::out_of_range bad_argument(error_reporting);
|
---|
96 |
|
---|
97 | throw(bad_argument);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | else if (x > +one)
|
---|
101 | {
|
---|
102 | if (numeric_limits<T>::has_quiet_NaN)
|
---|
103 | {
|
---|
104 | return(numeric_limits<T>::quiet_NaN());
|
---|
105 | }
|
---|
106 | else
|
---|
107 | {
|
---|
108 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
109 | ::std::domain_error bad_argument(error_reporting);
|
---|
110 |
|
---|
111 | throw(bad_argument);
|
---|
112 | }
|
---|
113 | }
|
---|
114 | else if (abs(x) >= taylor_n_bound)
|
---|
115 | {
|
---|
116 | return(log( (one + x) / (one - x) ) / two);
|
---|
117 | }
|
---|
118 | else
|
---|
119 | {
|
---|
120 | // approximation by taylor series in x at 0 up to order 2
|
---|
121 | T result = x;
|
---|
122 |
|
---|
123 | if (abs(x) >= taylor_2_bound)
|
---|
124 | {
|
---|
125 | T x3 = x*x*x;
|
---|
126 |
|
---|
127 | // approximation by taylor series in x at 0 up to order 4
|
---|
128 | result += x3/static_cast<T>(3);
|
---|
129 | }
|
---|
130 |
|
---|
131 | return(result);
|
---|
132 | }
|
---|
133 | }
|
---|
134 | #else
|
---|
135 | // These are implementation details (for main fare see below)
|
---|
136 |
|
---|
137 | namespace detail
|
---|
138 | {
|
---|
139 | template <
|
---|
140 | typename T,
|
---|
141 | bool InfinitySupported
|
---|
142 | >
|
---|
143 | struct atanh_helper1_t
|
---|
144 | {
|
---|
145 | static T get_pos_infinity()
|
---|
146 | {
|
---|
147 | return(+::std::numeric_limits<T>::infinity());
|
---|
148 | }
|
---|
149 |
|
---|
150 | static T get_neg_infinity()
|
---|
151 | {
|
---|
152 | return(-::std::numeric_limits<T>::infinity());
|
---|
153 | }
|
---|
154 | }; // boost::math::detail::atanh_helper1_t
|
---|
155 |
|
---|
156 |
|
---|
157 | template<typename T>
|
---|
158 | struct atanh_helper1_t<T, false>
|
---|
159 | {
|
---|
160 | static T get_pos_infinity()
|
---|
161 | {
|
---|
162 | ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
|
---|
163 | ::std::out_of_range bad_argument(error_reporting);
|
---|
164 |
|
---|
165 | throw(bad_argument);
|
---|
166 | }
|
---|
167 |
|
---|
168 | static T get_neg_infinity()
|
---|
169 | {
|
---|
170 | ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
|
---|
171 | ::std::out_of_range bad_argument(error_reporting);
|
---|
172 |
|
---|
173 | throw(bad_argument);
|
---|
174 | }
|
---|
175 | }; // boost::math::detail::atanh_helper1_t
|
---|
176 |
|
---|
177 |
|
---|
178 | template <
|
---|
179 | typename T,
|
---|
180 | bool QuietNanSupported
|
---|
181 | >
|
---|
182 | struct atanh_helper2_t
|
---|
183 | {
|
---|
184 | static T get_NaN()
|
---|
185 | {
|
---|
186 | return(::std::numeric_limits<T>::quiet_NaN());
|
---|
187 | }
|
---|
188 | }; // boost::detail::atanh_helper2_t
|
---|
189 |
|
---|
190 |
|
---|
191 | template<typename T>
|
---|
192 | struct atanh_helper2_t<T, false>
|
---|
193 | {
|
---|
194 | static T get_NaN()
|
---|
195 | {
|
---|
196 | ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
---|
197 | ::std::domain_error bad_argument(error_reporting);
|
---|
198 |
|
---|
199 | throw(bad_argument);
|
---|
200 | }
|
---|
201 | }; // boost::detail::atanh_helper2_t
|
---|
202 | } // boost::detail
|
---|
203 |
|
---|
204 |
|
---|
205 | // This is the main fare
|
---|
206 |
|
---|
207 | template<typename T>
|
---|
208 | inline T atanh(const T x)
|
---|
209 | {
|
---|
210 | using ::std::abs;
|
---|
211 | using ::std::sqrt;
|
---|
212 | using ::std::log;
|
---|
213 |
|
---|
214 | using ::std::numeric_limits;
|
---|
215 |
|
---|
216 | typedef detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity> helper1_type;
|
---|
217 | typedef detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN> helper2_type;
|
---|
218 |
|
---|
219 |
|
---|
220 | T const one = static_cast<T>(1);
|
---|
221 | T const two = static_cast<T>(2);
|
---|
222 |
|
---|
223 | static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
---|
224 | static T const taylor_n_bound = sqrt(taylor_2_bound);
|
---|
225 |
|
---|
226 | if (x < -one)
|
---|
227 | {
|
---|
228 | return(helper2_type::get_NaN());
|
---|
229 | }
|
---|
230 | else if (x < -one+numeric_limits<T>::epsilon())
|
---|
231 | {
|
---|
232 | return(helper1_type::get_neg_infinity());
|
---|
233 | }
|
---|
234 | else if (x > +one-numeric_limits<T>::epsilon())
|
---|
235 | {
|
---|
236 | return(helper1_type::get_pos_infinity());
|
---|
237 | }
|
---|
238 | else if (x > +one)
|
---|
239 | {
|
---|
240 | return(helper2_type::get_NaN());
|
---|
241 | }
|
---|
242 | else if (abs(x) >= taylor_n_bound)
|
---|
243 | {
|
---|
244 | return(log( (one + x) / (one - x) ) / two);
|
---|
245 | }
|
---|
246 | else
|
---|
247 | {
|
---|
248 | // approximation by taylor series in x at 0 up to order 2
|
---|
249 | T result = x;
|
---|
250 |
|
---|
251 | if (abs(x) >= taylor_2_bound)
|
---|
252 | {
|
---|
253 | T x3 = x*x*x;
|
---|
254 |
|
---|
255 | // approximation by taylor series in x at 0 up to order 4
|
---|
256 | result += x3/static_cast<T>(3);
|
---|
257 | }
|
---|
258 |
|
---|
259 | return(result);
|
---|
260 | }
|
---|
261 | }
|
---|
262 | #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | #endif /* BOOST_ATANH_HPP */
|
---|
267 |
|
---|