// boost atanh.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_ATANH_HPP #define BOOST_ATANH_HPP #include #include #include #include #include // This is the inverse of the hyperbolic tangent function. namespace boost { namespace math { #if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; #endif #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) // This is the main fare template inline T atanh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; T const one = static_cast(1); T const two = static_cast(2); static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); if (x < -one) { if (numeric_limits::has_quiet_NaN) { return(numeric_limits::quiet_NaN()); } else { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } } else if (x < -one+numeric_limits::epsilon()) { if (numeric_limits::has_infinity) { return(-numeric_limits::infinity()); } else { ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } } else if (x > +one-numeric_limits::epsilon()) { if (numeric_limits::has_infinity) { return(+numeric_limits::infinity()); } else { ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } } else if (x > +one) { if (numeric_limits::has_quiet_NaN) { return(numeric_limits::quiet_NaN()); } else { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } } else if (abs(x) >= taylor_n_bound) { return(log( (one + x) / (one - x) ) / two); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result += x3/static_cast(3); } return(result); } } #else // These are implementation details (for main fare see below) namespace detail { template < typename T, bool InfinitySupported > struct atanh_helper1_t { static T get_pos_infinity() { return(+::std::numeric_limits::infinity()); } static T get_neg_infinity() { return(-::std::numeric_limits::infinity()); } }; // boost::math::detail::atanh_helper1_t template struct atanh_helper1_t { static T get_pos_infinity() { ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } static T get_neg_infinity() { ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } }; // boost::math::detail::atanh_helper1_t template < typename T, bool QuietNanSupported > struct atanh_helper2_t { static T get_NaN() { return(::std::numeric_limits::quiet_NaN()); } }; // boost::detail::atanh_helper2_t template struct atanh_helper2_t { static T get_NaN() { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } }; // boost::detail::atanh_helper2_t } // boost::detail // This is the main fare template inline T atanh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; typedef detail::atanh_helper1_t::has_infinity> helper1_type; typedef detail::atanh_helper2_t::has_quiet_NaN> helper2_type; T const one = static_cast(1); T const two = static_cast(2); static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); if (x < -one) { return(helper2_type::get_NaN()); } else if (x < -one+numeric_limits::epsilon()) { return(helper1_type::get_neg_infinity()); } else if (x > +one-numeric_limits::epsilon()) { return(helper1_type::get_pos_infinity()); } else if (x > +one) { return(helper2_type::get_NaN()); } else if (abs(x) >= taylor_n_bound) { return(log( (one + x) / (one - x) ) / two); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result += x3/static_cast(3); } return(result); } } #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ } } #endif /* BOOST_ATANH_HPP */