1 | //
|
---|
2 | // Copyright (c) 2000-2002
|
---|
3 | // Joerg Walter, Mathias Koch
|
---|
4 | //
|
---|
5 | // Permission to use, copy, modify, distribute and sell this software
|
---|
6 | // and its documentation for any purpose is hereby granted without fee,
|
---|
7 | // provided that the above copyright notice appear in all copies and
|
---|
8 | // that both that copyright notice and this permission notice appear
|
---|
9 | // in supporting documentation. The authors make no representations
|
---|
10 | // about the suitability of this software for any purpose.
|
---|
11 | // It is provided "as is" without express or implied warranty.
|
---|
12 | //
|
---|
13 | // The authors gratefully acknowledge the support of
|
---|
14 | // GeNeSys mbH & Co. KG in producing this work.
|
---|
15 | //
|
---|
16 |
|
---|
17 | #ifndef _BOOST_UBLAS_BLAS_
|
---|
18 | #define _BOOST_UBLAS_BLAS_
|
---|
19 |
|
---|
20 | #include <boost/numeric/ublas/traits.hpp>
|
---|
21 |
|
---|
22 | namespace boost { namespace numeric { namespace ublas {
|
---|
23 |
|
---|
24 | namespace blas_1 {
|
---|
25 |
|
---|
26 | /** \namespace boost::numeric::ublas::blas_1
|
---|
27 | \brief wrapper functions for level 1 blas
|
---|
28 | */
|
---|
29 |
|
---|
30 |
|
---|
31 | /** \brief 1-Norm: \f$\sum_i |x_i|\f$
|
---|
32 | \ingroup blas1
|
---|
33 | */
|
---|
34 | template<class V>
|
---|
35 | typename type_traits<typename V::value_type>::real_type
|
---|
36 | asum (const V &v) {
|
---|
37 | return norm_1 (v);
|
---|
38 | }
|
---|
39 | /** \brief 2-Norm: \f$\sum_i |x_i|^2\f$
|
---|
40 | \ingroup blas1
|
---|
41 | */
|
---|
42 | template<class V>
|
---|
43 | typename type_traits<typename V::value_type>::real_type
|
---|
44 | nrm2 (const V &v) {
|
---|
45 | return norm_2 (v);
|
---|
46 | }
|
---|
47 | /** \brief element with larges absolute value: \f$\max_i |x_i|\f$
|
---|
48 | \ingroup blas1
|
---|
49 | */
|
---|
50 | template<class V>
|
---|
51 | typename type_traits<typename V::value_type>::real_type
|
---|
52 | amax (const V &v) {
|
---|
53 | return norm_inf (v);
|
---|
54 | }
|
---|
55 |
|
---|
56 | /** \brief inner product of vectors \a v1 and \a v2
|
---|
57 | \ingroup blas1
|
---|
58 | */
|
---|
59 | template<class V1, class V2>
|
---|
60 | typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
|
---|
61 | dot (const V1 &v1, const V2 &v2) {
|
---|
62 | return inner_prod (v1, v2);
|
---|
63 | }
|
---|
64 |
|
---|
65 | /** \brief copy vector \a v2 to \a v1
|
---|
66 | \ingroup blas1
|
---|
67 | */
|
---|
68 | template<class V1, class V2>
|
---|
69 | V1 &
|
---|
70 | copy (V1 &v1, const V2 &v2) {
|
---|
71 | return v1.assign (v2);
|
---|
72 | }
|
---|
73 |
|
---|
74 | /** \brief swap vectors \a v1 and \a v2
|
---|
75 | \ingroup blas1
|
---|
76 | */
|
---|
77 | template<class V1, class V2>
|
---|
78 | void swap (V1 &v1, V2 &v2) {
|
---|
79 | v1.swap (v2);
|
---|
80 | }
|
---|
81 |
|
---|
82 | /** \brief scale vector \a v with scalar \a t
|
---|
83 | \ingroup blas1
|
---|
84 | */
|
---|
85 | template<class V, class T>
|
---|
86 | V &
|
---|
87 | scal (V &v, const T &t) {
|
---|
88 | return v *= t;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /** \brief compute \a v1 = \a v1 + \a t * \a v2
|
---|
92 | \ingroup blas1
|
---|
93 | */
|
---|
94 | template<class V1, class T, class V2>
|
---|
95 | V1 &
|
---|
96 | axpy (V1 &v1, const T &t, const V2 &v2) {
|
---|
97 | return v1.plus_assign (t * v2);
|
---|
98 | }
|
---|
99 |
|
---|
100 | /** \brief apply plane rotation
|
---|
101 | \ingroup blas1
|
---|
102 | */
|
---|
103 | template<class T1, class V1, class T2, class V2>
|
---|
104 | void
|
---|
105 | rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) {
|
---|
106 | typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
|
---|
107 | vector<promote_type> vt (t1 * v1 + t2 * v2);
|
---|
108 | v2.assign (- t2 * v1 + t1 * v2);
|
---|
109 | v1.assign (vt);
|
---|
110 | }
|
---|
111 |
|
---|
112 | }
|
---|
113 |
|
---|
114 | namespace blas_2 {
|
---|
115 |
|
---|
116 | /** \namespace boost::numeric::ublas::blas_2
|
---|
117 | \brief wrapper functions for level 2 blas
|
---|
118 | */
|
---|
119 |
|
---|
120 | /** \brief multiply vector \a v with triangular matrix \a m
|
---|
121 | \ingroup blas2
|
---|
122 | \todo: check that matrix is really triangular
|
---|
123 | */
|
---|
124 | template<class V, class M>
|
---|
125 | V &
|
---|
126 | tmv (V &v, const M &m) {
|
---|
127 | return v = prod (m, v);
|
---|
128 | }
|
---|
129 |
|
---|
130 | /** \brief solve \a m \a x = \a v in place, \a m is triangular matrix
|
---|
131 | \ingroup blas2
|
---|
132 | */
|
---|
133 | template<class V, class M, class C>
|
---|
134 | V &
|
---|
135 | tsv (V &v, const M &m, C) {
|
---|
136 | return v = solve (m, v, C ());
|
---|
137 | }
|
---|
138 |
|
---|
139 | /** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2)
|
---|
140 | \ingroup blas2
|
---|
141 | */
|
---|
142 | template<class V1, class T1, class T2, class M, class V2>
|
---|
143 | V1 &
|
---|
144 | gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) {
|
---|
145 | return v1 = t1 * v1 + t2 * prod (m, v2);
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>)
|
---|
149 | \ingroup blas2
|
---|
150 | */
|
---|
151 | template<class M, class T, class V1, class V2>
|
---|
152 | M &
|
---|
153 | gr (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
---|
154 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
---|
155 | return m += t * outer_prod (v1, v2);
|
---|
156 | #else
|
---|
157 | return m = m + t * outer_prod (v1, v2);
|
---|
158 | #endif
|
---|
159 | }
|
---|
160 |
|
---|
161 | /** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>)
|
---|
162 | \ingroup blas2
|
---|
163 | */
|
---|
164 | template<class M, class T, class V>
|
---|
165 | M &
|
---|
166 | sr (M &m, const T &t, const V &v) {
|
---|
167 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
---|
168 | return m += t * outer_prod (v, v);
|
---|
169 | #else
|
---|
170 | return m = m + t * outer_prod (v, v);
|
---|
171 | #endif
|
---|
172 | }
|
---|
173 | /** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>)
|
---|
174 | \ingroup blas2
|
---|
175 | */
|
---|
176 | template<class M, class T, class V>
|
---|
177 | M &
|
---|
178 | hr (M &m, const T &t, const V &v) {
|
---|
179 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
---|
180 | return m += t * outer_prod (v, conj (v));
|
---|
181 | #else
|
---|
182 | return m = m + t * outer_prod (v, conj (v));
|
---|
183 | #endif
|
---|
184 | }
|
---|
185 |
|
---|
186 | /** \brief symmetric rank 2 update: \a m = \a m + \a t *
|
---|
187 | (\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>)
|
---|
188 | \ingroup blas2
|
---|
189 | */
|
---|
190 | template<class M, class T, class V1, class V2>
|
---|
191 | M &
|
---|
192 | sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
---|
193 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
---|
194 | return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
|
---|
195 | #else
|
---|
196 | return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
|
---|
197 | #endif
|
---|
198 | }
|
---|
199 | /** \brief hermitian rank 2 update: \a m = \a m +
|
---|
200 | \a t * (\a v1 * \a v2<sup>H</sup>)
|
---|
201 | + \a v2 * (\a t * \a v1)<sup>H</sup>)
|
---|
202 | \ingroup blas2
|
---|
203 | */
|
---|
204 | template<class M, class T, class V1, class V2>
|
---|
205 | M &
|
---|
206 | hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
|
---|
207 | #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
|
---|
208 | return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
|
---|
209 | #else
|
---|
210 | return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
|
---|
211 | #endif
|
---|
212 | }
|
---|
213 |
|
---|
214 | }
|
---|
215 |
|
---|
216 | namespace blas_3 {
|
---|
217 |
|
---|
218 | /** \namespace boost::numeric::ublas::blas_3
|
---|
219 | \brief wrapper functions for level 3 blas
|
---|
220 | */
|
---|
221 |
|
---|
222 | /** \brief triangular matrix multiplication
|
---|
223 | \ingroup blas3
|
---|
224 | */
|
---|
225 | template<class M1, class T, class M2, class M3>
|
---|
226 | M1 &
|
---|
227 | tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) {
|
---|
228 | return m1 = t * prod (m2, m3);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place,
|
---|
232 | \a m2 is a triangular matrix
|
---|
233 | \ingroup blas3
|
---|
234 | */
|
---|
235 | template<class M1, class T, class M2, class C>
|
---|
236 | M1 &
|
---|
237 | tsm (M1 &m1, const T &t, const M2 &m2, C) {
|
---|
238 | return m1 = solve (m2, t * m1, C ());
|
---|
239 | }
|
---|
240 |
|
---|
241 | /** \brief general matrix multiplication
|
---|
242 | \ingroup blas3
|
---|
243 | */
|
---|
244 | template<class M1, class T1, class T2, class M2, class M3>
|
---|
245 | M1 &
|
---|
246 | gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
---|
247 | return m1 = t1 * m1 + t2 * prod (m2, m3);
|
---|
248 | }
|
---|
249 |
|
---|
250 | /** \brief symmetric rank k update: \a m1 = \a t * \a m1 +
|
---|
251 | \a t2 * (\a m2 * \a m2<sup>T</sup>)
|
---|
252 | \ingroup blas3
|
---|
253 | \todo use opb_prod()
|
---|
254 | */
|
---|
255 | template<class M1, class T1, class T2, class M2>
|
---|
256 | M1 &
|
---|
257 | srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
|
---|
258 | return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
|
---|
259 | }
|
---|
260 | /** \brief hermitian rank k update: \a m1 = \a t * \a m1 +
|
---|
261 | \a t2 * (\a m2 * \a m2<sup>H</sup>)
|
---|
262 | \ingroup blas3
|
---|
263 | \todo use opb_prod()
|
---|
264 | */
|
---|
265 | template<class M1, class T1, class T2, class M2>
|
---|
266 | M1 &
|
---|
267 | hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
|
---|
268 | return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
|
---|
269 | }
|
---|
270 |
|
---|
271 | /** \brief generalized symmetric rank k update:
|
---|
272 | \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>)
|
---|
273 | + \a t2 * (\a m3 * \a m2<sup>T</sup>)
|
---|
274 | \ingroup blas3
|
---|
275 | \todo use opb_prod()
|
---|
276 | */
|
---|
277 | template<class M1, class T1, class T2, class M2, class M3>
|
---|
278 | M1 &
|
---|
279 | sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
---|
280 | return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
|
---|
281 | }
|
---|
282 | /** \brief generalized hermitian rank k update:
|
---|
283 | \a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>)
|
---|
284 | + (\a m3 * (\a t2 * \a m2)<sup>H</sup>)
|
---|
285 | \ingroup blas3
|
---|
286 | \todo use opb_prod()
|
---|
287 | */
|
---|
288 | template<class M1, class T1, class T2, class M2, class M3>
|
---|
289 | M1 &
|
---|
290 | hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
|
---|
291 | return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
|
---|
292 | }
|
---|
293 |
|
---|
294 | }
|
---|
295 |
|
---|
296 | }}}
|
---|
297 |
|
---|
298 | #endif
|
---|
299 |
|
---|
300 |
|
---|