// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. The authors make no representations // about the suitability of this software for any purpose. // It is provided "as is" without express or implied warranty. // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_MATRIX_PROXY_ #define _BOOST_UBLAS_MATRIX_PROXY_ #include #include #include #include // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { // Matrix based row vector class template class matrix_row: public vector_expression > { typedef matrix_row self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_row (matrix_type &data, size_type i): data_ (data), i_ (i) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (i_ < data_.size1 (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return data_.size2 (); } BOOST_UBLAS_INLINE size_type index () const { return i_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type j) const { return data_ (i_, j); } BOOST_UBLAS_INLINE reference operator () (size_type j) { return data_ (i_, j); } BOOST_UBLAS_INLINE const_reference operator [] (size_type j) const { return (*this) (j); } BOOST_UBLAS_INLINE reference operator [] (size_type j) { return (*this) (j); } #else BOOST_UBLAS_INLINE reference operator () (size_type j) const { return data_ (i_, j); } BOOST_UBLAS_INLINE reference operator [] (size_type j) const { return (*this) (j); } #endif // Assignment BOOST_UBLAS_INLINE matrix_row &operator = (const matrix_row &mr) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (mr)); return *this; } BOOST_UBLAS_INLINE matrix_row &assign_temporary (matrix_row &mr) { // assign elements, proxied container remains the same vector_assign (*this, mr); return *this; } template BOOST_UBLAS_INLINE matrix_row &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_row &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_row &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_row &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_row &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_row &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_row &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_row &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_row &mr) const { return (*this).data_.same_closure (mr.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_row &mr) const { return (*this).data_ == mr.data_ && index () == mr.index (); } // Swapping BOOST_UBLAS_INLINE void swap (matrix_row mr) { if (this != &mr) { BOOST_UBLAS_CHECK (size () == mr.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), mr.begin ()); vector_swap (*this, mr); } } BOOST_UBLAS_INLINE friend void swap (matrix_row mr1, matrix_row mr2) { mr1.swap (mr2); } // Iterator types private: typedef typename M::const_iterator2 const_subiterator_type; typedef typename boost::mpl::if_, typename M::const_iterator2, typename M::iterator2>::type subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator, typename subiterator_type::iterator_category> iterator; typedef indexed_const_iterator, typename const_subiterator_type::iterator_category> const_iterator; #else class const_iterator; class iterator; #endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type j) const { const_subiterator_type it2 (data_.find2 (1, i_, j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator (*this, it2.index2 ()); #else return const_iterator (*this, it2); #endif } BOOST_UBLAS_INLINE iterator find (size_type j) { subiterator_type it2 (data_.find2 (1, i_, j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator (*this, it2.index2 ()); #else return iterator (*this, it2); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename const_subiterator_type::value_type value_type; typedef typename const_subiterator_type::difference_type difference_type; typedef typename const_subiterator_type::reference reference; typedef typename const_subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &mr, const const_subiterator_type &it): container_const_reference (mr), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const iterator &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename subiterator_type::value_type value_type; typedef typename subiterator_type::difference_type difference_type; typedef typename subiterator_type::reference reference; typedef typename subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &mr, const subiterator_type &it): container_reference (mr), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator; }; #endif BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: matrix_closure_type data_; size_type i_; }; // Projections template BOOST_UBLAS_INLINE matrix_row row (M &data, typename M::size_type i) { return matrix_row (data, i); } template BOOST_UBLAS_INLINE const matrix_row row (const M &data, typename M::size_type i) { return matrix_row (data, i); } // Specialize temporary template struct vector_temporary_traits< matrix_row > : vector_temporary_traits< M > {} ; // Matrix based column vector class template class matrix_column: public vector_expression > { typedef matrix_column self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_column (matrix_type &data, size_type j): data_ (data), j_ (j) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (j_ < data_.size2 (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return data_.size1 (); } BOOST_UBLAS_INLINE size_type index () const { return j_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (i, j_); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (i, j_); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (i, j_); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // Assignment BOOST_UBLAS_INLINE matrix_column &operator = (const matrix_column &mc) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (mc)); return *this; } BOOST_UBLAS_INLINE matrix_column &assign_temporary (matrix_column &mc) { // assign elements, proxied container remains the same vector_assign (*this, mc); return *this; } template BOOST_UBLAS_INLINE matrix_column &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_column &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_column &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_column &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_column &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_column &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_column &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_column &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_column &mc) const { return (*this).data_.same_closure (mc.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_column &mc) const { return (*this).data_ == mc.data_ && index () == mc.index (); } // Swapping BOOST_UBLAS_INLINE void swap (matrix_column mc) { if (this != &mc) { BOOST_UBLAS_CHECK (size () == mc.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), mc.begin ()); vector_swap (*this, mc); } } BOOST_UBLAS_INLINE friend void swap (matrix_column mc1, matrix_column mc2) { mc1.swap (mc2); } // Iterator types private: typedef typename M::const_iterator1 const_subiterator_type; typedef typename boost::mpl::if_, typename M::const_iterator1, typename M::iterator1>::type subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator, typename subiterator_type::iterator_category> iterator; typedef indexed_const_iterator, typename const_subiterator_type::iterator_category> const_iterator; #else class const_iterator; class iterator; #endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { const_subiterator_type it1 (data_.find1 (1, i, j_)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator (*this, it1.index1 ()); #else return const_iterator (*this, it1); #endif } BOOST_UBLAS_INLINE iterator find (size_type i) { subiterator_type it1 (data_.find1 (1, i, j_)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator (*this, it1.index1 ()); #else return iterator (*this, it1); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename const_subiterator_type::value_type value_type; typedef typename const_subiterator_type::difference_type difference_type; typedef typename const_subiterator_type::reference reference; typedef typename const_subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &mc, const const_subiterator_type &it): container_const_reference (mc), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const iterator &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index1 (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename subiterator_type::value_type value_type; typedef typename subiterator_type::difference_type difference_type; typedef typename subiterator_type::reference reference; typedef typename subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &mc, const subiterator_type &it): container_reference (mc), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index1 (); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator; }; #endif BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: matrix_closure_type data_; size_type j_; }; // Projections template BOOST_UBLAS_INLINE matrix_column column (M &data, typename M::size_type j) { return matrix_column (data, j); } template BOOST_UBLAS_INLINE const matrix_column column (const M &data, typename M::size_type j) { return matrix_column (data, j); } // Specialize temporary template struct vector_temporary_traits< matrix_column > : vector_temporary_traits< M > {} ; // Matrix based vector range class template class matrix_vector_range: public vector_expression > { typedef matrix_vector_range self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef basic_range range_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_vector_range (matrix_type &data, const range_type &r1, const range_type &r2): data_ (data), r1_ (r1.preprocess (data.size1 ())), r2_ (r2.preprocess (data.size2 ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (r1_.start () <= data_.size1 () && // r1_.start () + r1_.size () <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (r2_.start () <= data_.size2 () && // r2_.start () + r2_.size () <= data_.size2 (), bad_index ()); // BOOST_UBLAS_CHECK (r1_.size () == r2_.size (), bad_size ()); } // Accessors BOOST_UBLAS_INLINE size_type start1 () const { return r1_.start (); } BOOST_UBLAS_INLINE size_type start2 () const { return r2_.start (); } BOOST_UBLAS_INLINE size_type size () const { return BOOST_UBLAS_SAME (r1_.size (), r2_.size ()); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (r1_ (i), r2_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (r1_ (i), r2_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (r1_ (i), r2_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // Assignment BOOST_UBLAS_INLINE matrix_vector_range &operator = (const matrix_vector_range &mvr) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (mvr)); return *this; } BOOST_UBLAS_INLINE matrix_vector_range &assign_temporary (matrix_vector_range &mvr) { // assign elements, proxied container remains the same vector_assign (*this, mvr); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_vector_range &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_vector_range &mvr) const { return (*this).data_.same_closure (mvr.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_vector_range &mvr) const { return (*this).data_ == mvr.data_ && r1_ == mvr.r1_ && r2_ == mvr.r2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_vector_range mvr) { if (this != &mvr) { BOOST_UBLAS_CHECK (size () == mvr.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), mvr.begin ()); vector_swap (*this, mvr); } } BOOST_UBLAS_INLINE friend void swap (matrix_vector_range mvr1, matrix_vector_range mvr2) { mvr1.swap (mvr2); } // Iterator types private: // Use range as an index - FIXME this fails for packed assignment typedef typename range_type::const_iterator const_subiterator1_type; typedef typename range_type::const_iterator subiterator1_type; typedef typename range_type::const_iterator const_subiterator2_type; typedef typename range_type::const_iterator subiterator2_type; public: class const_iterator; class iterator; // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { return const_iterator (*this, r1_.begin () + i, r2_.begin () + i); } BOOST_UBLAS_INLINE iterator find (size_type i) { return iterator (*this, r1_.begin () + i, r2_.begin () + i); } class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_range::value_type value_type; typedef typename matrix_vector_range::difference_type difference_type; typedef typename matrix_vector_range::const_reference reference; typedef const typename matrix_vector_range::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &mvr, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (mvr), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator (const iterator &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_range::value_type value_type; typedef typename matrix_vector_range::difference_type difference_type; typedef typename matrix_vector_range::reference reference; typedef typename matrix_vector_range::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator (self_type &mvr, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (mvr), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: matrix_closure_type data_; range_type r1_; range_type r2_; }; // Specialize temporary template struct vector_temporary_traits< matrix_vector_range > : vector_temporary_traits< M > {} ; // Matrix based vector slice class template class matrix_vector_slice: public vector_expression > { typedef matrix_vector_slice self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef basic_range range_type; typedef basic_slice slice_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_vector_slice (matrix_type &data, const slice_type &s1, const slice_type &s2): data_ (data), s1_ (s1.preprocess (data.size1 ())), s2_ (s2.preprocess (data.size2 ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (s1_.start () <= data_.size1 () && // s1_.start () + s1_.stride () * (s1_.size () - (s1_.size () > 0)) <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (s2_.start () <= data_.size2 () && // s2_.start () + s2_.stride () * (s2_.size () - (s2_.size () > 0)) <= data_.size2 (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type start1 () const { return s1_.start (); } BOOST_UBLAS_INLINE size_type start2 () const { return s2_.start (); } BOOST_UBLAS_INLINE difference_type stride1 () const { return s1_.stride (); } BOOST_UBLAS_INLINE difference_type stride2 () const { return s2_.stride (); } BOOST_UBLAS_INLINE size_type size () const { return BOOST_UBLAS_SAME (s1_.size (), s2_.size ()); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (s1_ (i), s2_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (s1_ (i), s2_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (s1_ (i), s2_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // Assignment BOOST_UBLAS_INLINE matrix_vector_slice &operator = (const matrix_vector_slice &mvs) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (mvs)); return *this; } BOOST_UBLAS_INLINE matrix_vector_slice &assign_temporary (matrix_vector_slice &mvs) { // assign elements, proxied container remains the same vector_assign (*this, mvs); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_vector_slice &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_vector_slice &mvs) const { return (*this).data_.same_closure (mvs.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_vector_slice &mvs) const { return (*this).data_ == mvs.data_ && s1_ == mvs.s1_ && s2_ == mvs.s2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_vector_slice mvs) { if (this != &mvs) { BOOST_UBLAS_CHECK (size () == mvs.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), mvs.begin ()); vector_swap (*this, mvs); } } BOOST_UBLAS_INLINE friend void swap (matrix_vector_slice mvs1, matrix_vector_slice mvs2) { mvs1.swap (mvs2); } // Iterator types private: // Use slice as an index - FIXME this fails for packed assignment typedef typename slice_type::const_iterator const_subiterator1_type; typedef typename slice_type::const_iterator subiterator1_type; typedef typename slice_type::const_iterator const_subiterator2_type; typedef typename slice_type::const_iterator subiterator2_type; public: class const_iterator; class iterator; // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { return const_iterator (*this, s1_.begin () + i, s2_.begin () + i); } BOOST_UBLAS_INLINE iterator find (size_type i) { return iterator (*this, s1_.begin () + i, s2_.begin () + i); } // Iterators simply are indices. class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_slice::value_type value_type; typedef typename matrix_vector_slice::difference_type difference_type; typedef typename matrix_vector_slice::const_reference reference; typedef const typename matrix_vector_slice::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &mvs, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (mvs), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator (const iterator &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_slice::value_type value_type; typedef typename matrix_vector_slice::difference_type difference_type; typedef typename matrix_vector_slice::reference reference; typedef typename matrix_vector_slice::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator (self_type &mvs, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (mvs), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: matrix_closure_type data_; slice_type s1_; slice_type s2_; }; // Specialize temporary template struct vector_temporary_traits< matrix_vector_slice > : vector_temporary_traits< M > {} ; // Matrix based vector indirection class template class matrix_vector_indirect: public vector_expression > { typedef matrix_vector_indirect self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef M matrix_type; typedef IA indirect_array_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_vector_indirect (matrix_type &data, size_type size): data_ (data), ia1_ (size), ia2_ (size) {} BOOST_UBLAS_INLINE matrix_vector_indirect (matrix_type &data, const indirect_array_type &ia1, const indirect_array_type &ia2): data_ (data), ia1_ (ia1), ia2_ (ia2) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (ia1_.size () == ia2_.size (), bad_size ()); } // Accessors BOOST_UBLAS_INLINE size_type size () const { return BOOST_UBLAS_SAME (ia1_.size (), ia2_.size ()); } BOOST_UBLAS_INLINE const indirect_array_type &indirect1 () const { return ia1_; } BOOST_UBLAS_INLINE indirect_array_type &indirect1 () { return ia1_; } BOOST_UBLAS_INLINE const indirect_array_type &indirect2 () const { return ia2_; } BOOST_UBLAS_INLINE indirect_array_type &indirect2 () { return ia2_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (ia1_ (i), ia2_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (ia1_ (i), ia2_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (ia1_ (i), ia2_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // Assignment BOOST_UBLAS_INLINE matrix_vector_indirect &operator = (const matrix_vector_indirect &mvi) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (mvi)); return *this; } BOOST_UBLAS_INLINE matrix_vector_indirect &assign_temporary (matrix_vector_indirect &mvi) { // assign elements, proxied container remains the same vector_assign (*this, mvi); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_vector_indirect &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_vector_indirect &mvi) const { return (*this).data_.same_closure (mvi.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_vector_indirect &mvi) const { return (*this).data_ == mvi.data_ && ia1_ == mvi.ia1_ && ia2_ == mvi.ia2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_vector_indirect mvi) { if (this != &mvi) { BOOST_UBLAS_CHECK (size () == mvi.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), mvi.begin ()); vector_swap (*this, mvi); } } BOOST_UBLAS_INLINE friend void swap (matrix_vector_indirect mvi1, matrix_vector_indirect mvi2) { mvi1.swap (mvi2); } // Iterator types private: // Use indirect array as an index - FIXME this fails for packed assignment typedef typename IA::const_iterator const_subiterator1_type; typedef typename IA::const_iterator subiterator1_type; typedef typename IA::const_iterator const_subiterator2_type; typedef typename IA::const_iterator subiterator2_type; public: class const_iterator; class iterator; // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { return const_iterator (*this, ia1_.begin () + i, ia2_.begin () + i); } BOOST_UBLAS_INLINE iterator find (size_type i) { return iterator (*this, ia1_.begin () + i, ia2_.begin () + i); } // Iterators simply are indices. class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_indirect::value_type value_type; typedef typename matrix_vector_indirect::difference_type difference_type; typedef typename matrix_vector_indirect::const_reference reference; typedef const typename matrix_vector_indirect::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &mvi, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (mvi), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator (const iterator &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: // FIXME Iterator can never be different code was: // typename iterator_restrict_traits::iterator_category> BOOST_STATIC_ASSERT ((boost::is_same::value )); typedef typename matrix_vector_indirect::value_type value_type; typedef typename matrix_vector_indirect::difference_type difference_type; typedef typename matrix_vector_indirect::reference reference; typedef typename matrix_vector_indirect::value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator (self_type &mvi, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (mvi), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it1_; ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it1_; -- it2_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it1_ += n; it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it1_ -= n; it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return BOOST_UBLAS_SAME (it1_ - it.it1_, it2_ - it.it2_); } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return BOOST_UBLAS_SAME (it1_.index (), it2_.index ()); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ == it.it1_ && it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it1_ < it.it1_ && it2_ < it.it2_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator; }; BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: matrix_closure_type data_; indirect_array_type ia1_; indirect_array_type ia2_; }; // Specialize temporary template struct vector_temporary_traits< matrix_vector_indirect > : vector_temporary_traits< M > {} ; // Matrix based range class template class matrix_range: public matrix_expression > { typedef matrix_range self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef basic_range range_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_range (matrix_type &data, const range_type &r1, const range_type &r2): data_ (data), r1_ (r1.preprocess (data.size1 ())), r2_ (r2.preprocess (data.size2 ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (r1_.start () <= data_.size1 () && // r1_.start () + r1_.size () <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (r2_.start () <= data_.size2 () && // r2_.start () + r2_.size () <= data_.size2 (), bad_index ()); } BOOST_UBLAS_INLINE matrix_range (const matrix_closure_type &data, const range_type &r1, const range_type &r2, int): data_ (data), r1_ (r1.preprocess (data.size1 ())), r2_ (r2.preprocess (data.size2 ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (r1_.start () <= data_.size1 () && // r1_.start () + r1_.size () <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (r2_.start () <= data_.size2 () && // r2_.start () + r2_.size () <= data_.size2 (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type start1 () const { return r1_.start (); } BOOST_UBLAS_INLINE size_type size1 () const { return r1_.size (); } BOOST_UBLAS_INLINE size_type start2() const { return r2_.start (); } BOOST_UBLAS_INLINE size_type size2 () const { return r2_.size (); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data_ (r1_ (i), r2_ (j)); } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return data_ (r1_ (i), r2_ (j)); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { return data_ (r1_ (i), r2_ (j)); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that matrix_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE matrix_range project (const range_type &r1, const range_type &r2) const { return matrix_range (data_, r1_.compose (r1.preprocess (data_.size1 ())), r2_.compose (r2.preprocess (data_.size2 ())), 0); } // Assignment BOOST_UBLAS_INLINE matrix_range &operator = (const matrix_range &mr) { matrix_assign (*this, mr); return *this; } BOOST_UBLAS_INLINE matrix_range &assign_temporary (matrix_range &mr) { return *this = mr; } template BOOST_UBLAS_INLINE matrix_range &operator = (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_range &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_range& operator += (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_range &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_range& operator -= (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_range &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_range& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_range& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_range &mr) const { return (*this).data_.same_closure (mr.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_range &mr) const { return (*this).data_ == (mr.data_) && r1_ == mr.r1_ && r2_ == mr.r2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_range mr) { if (this != &mr) { BOOST_UBLAS_CHECK (size1 () == mr.size1 (), bad_size ()); BOOST_UBLAS_CHECK (size2 () == mr.size2 (), bad_size ()); matrix_swap (*this, mr); } } BOOST_UBLAS_INLINE friend void swap (matrix_range mr1, matrix_range mr2) { mr1.swap (mr2); } // Iterator types private: typedef typename M::const_iterator1 const_subiterator1_type; typedef typename boost::mpl::if_, typename M::const_iterator1, typename M::iterator1>::type subiterator1_type; typedef typename M::const_iterator2 const_subiterator2_type; typedef typename boost::mpl::if_, typename M::const_iterator2, typename M::iterator2>::type subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1, typename subiterator1_type::iterator_category> iterator1; typedef indexed_iterator2, typename subiterator2_type::iterator_category> iterator2; typedef indexed_const_iterator1, typename const_subiterator1_type::iterator_category> const_iterator1; typedef indexed_const_iterator2, typename const_subiterator2_type::iterator_category> const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { const_subiterator1_type it1 (data_.find1 (rank, start1 () + i, start2 () + j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, it1.index1 (), it1.index2 ()); #else return const_iterator1 (*this, it1); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { subiterator1_type it1 (data_.find1 (rank, start1 () + i, start2 () + j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, it1.index1 (), it1.index2 ()); #else return iterator1 (*this, it1); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { const_subiterator2_type it2 (data_.find2 (rank, start1 () + i, start2 () + j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, it2.index1 (), it2.index2 ()); #else return const_iterator2 (*this, it2); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { subiterator2_type it2 (data_.find2 (rank, start1 () + i, start2 () + j)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, it2.index1 (), it2.index2 ()); #else return iterator2 (*this, it2); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename const_subiterator1_type::value_type value_type; typedef typename const_subiterator1_type::difference_type difference_type; typedef typename const_subiterator1_type::reference reference; typedef typename const_subiterator1_type::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &mr, const const_subiterator1_type &it): container_const_reference (mr), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return *it_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { const self_type &mr = (*this) (); return mr.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { const self_type &mr = (*this) (); return mr.find2 (1, index1 (), mr.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_.index1 () - (*this) ().start1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it_.index2 () - (*this) ().start2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator1_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename subiterator1_type::value_type value_type; typedef typename subiterator1_type::difference_type difference_type; typedef typename subiterator1_type::reference reference; typedef typename subiterator1_type::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &mr, const subiterator1_type &it): container_reference (mr), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return *it_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { self_type &mr = (*this) (); return mr.find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { self_type &mr = (*this) (); return mr.find2 (1, index1 (), mr.size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_.index1 () - (*this) ().start1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it_.index2 () - (*this) ().start2 (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator1_type it_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename const_subiterator2_type::value_type value_type; typedef typename const_subiterator2_type::difference_type difference_type; typedef typename const_subiterator2_type::reference reference; typedef typename const_subiterator2_type::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &mr, const const_subiterator2_type &it): container_const_reference (mr), it_ (it) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return *it_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { const self_type &mr = (*this) (); return mr.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { const self_type &mr = (*this) (); return mr.find1 (1, mr.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_.index1 () - (*this) ().start1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it_.index2 () - (*this) ().start2 (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator2_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename subiterator2_type::value_type value_type; typedef typename subiterator2_type::difference_type difference_type; typedef typename subiterator2_type::reference reference; typedef typename subiterator2_type::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &mr, const subiterator2_type &it): container_reference (mr), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return *it_; } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { self_type &mr = (*this) (); return mr.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { self_type &mr = (*this) (); return mr.find1 (1, mr.size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it_.index1 () - (*this) ().start1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it_.index2 () - (*this) ().start2 (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator2_type it_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; range_type r1_; range_type r2_; }; // Simple Projections template BOOST_UBLAS_INLINE matrix_range subrange (M &data, typename M::size_type start1, typename M::size_type stop1, typename M::size_type start2, typename M::size_type stop2) { typedef basic_range range_type; return matrix_range (data, range_type (start1, stop1), range_type (start2, stop2)); } template BOOST_UBLAS_INLINE matrix_range subrange (const M &data, typename M::size_type start1, typename M::size_type stop1, typename M::size_type start2, typename M::size_type stop2) { typedef basic_range range_type; return matrix_range (data, range_type (start1, stop1), range_type (start2, stop2)); } // Generic Projections template BOOST_UBLAS_INLINE matrix_range project (M &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { return matrix_range (data, r1, r2); } template BOOST_UBLAS_INLINE const matrix_range project (const M &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { // ISSUE was: return matrix_range (const_cast (data), r1, r2); return matrix_range (data, r1, r2); } template BOOST_UBLAS_INLINE matrix_range project (matrix_range &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { return data.project (r1, r2); } template BOOST_UBLAS_INLINE const matrix_range project (const matrix_range &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { return data.project (r1, r2); } // Specialization of temporary_traits template struct matrix_temporary_traits< matrix_range > : matrix_temporary_traits< M > {} ; template struct vector_temporary_traits< matrix_range > : vector_temporary_traits< M > {} ; // Matrix based slice class template class matrix_slice: public matrix_expression > { typedef matrix_slice self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression::operator (); #endif typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef basic_range range_type; typedef basic_slice slice_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_slice (matrix_type &data, const slice_type &s1, const slice_type &s2): data_ (data), s1_ (s1.preprocess (data.size1 ())), s2_ (s2.preprocess (data.size2 ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (s1_.start () <= data_.size1 () && // s1_.start () + s1_.stride () * (s1_.size () - (s1_.size () > 0)) <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (s2_.start () <= data_.size2 () && // s2_.start () + s2_.stride () * (s2_.size () - (s2_.size () > 0)) <= data_.size2 (), bad_index ()); } BOOST_UBLAS_INLINE matrix_slice (const matrix_closure_type &data, const slice_type &s1, const slice_type &s2, int): data_ (data), s1_ (s1.preprocess (data.size1 ())), s2_ (s2.preprocess (data.size2 ())) { // Early checking of preconditions. // BOOST_UBLAS_CHECK (s1_.start () <= data_.size1 () && // s1_.start () + s1_.stride () * (s1_.size () - (s1_.size () > 0)) <= data_.size1 (), bad_index ()); // BOOST_UBLAS_CHECK (s2_.start () <= data_.size2 () && // s2_.start () + s2_.stride () * (s2_.size () - (s2_.size () > 0)) <= data_.size2 (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type start1 () const { return s1_.start (); } BOOST_UBLAS_INLINE size_type start2 () const { return s2_.start (); } BOOST_UBLAS_INLINE difference_type stride1 () const { return s1_.stride (); } BOOST_UBLAS_INLINE difference_type stride2 () const { return s2_.stride (); } BOOST_UBLAS_INLINE size_type size1 () const { return s1_.size (); } BOOST_UBLAS_INLINE size_type size2 () const { return s2_.size (); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data_ (s1_ (i), s2_ (j)); } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return data_ (s1_ (i), s2_ (j)); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { return data_ (s1_ (i), s2_ (j)); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that matrix_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE matrix_slice project (const range_type &r1, const range_type &r2) const { return matrix_slice (data_, s1_.compose (r1.preprocess (data_.size1 ())), s2_.compose (r2.preprocess (data_.size2 ())), 0); } BOOST_UBLAS_INLINE matrix_slice project (const slice_type &s1, const slice_type &s2) const { return matrix_slice (data_, s1_.compose (s1.preprocess (data_.size1 ())), s2_.compose (s2.preprocess (data_.size2 ())), 0); } // Assignment BOOST_UBLAS_INLINE matrix_slice &operator = (const matrix_slice &ms) { matrix_assign (*this, ms); return *this; } BOOST_UBLAS_INLINE matrix_slice &assign_temporary (matrix_slice &ms) { return *this = ms; } template BOOST_UBLAS_INLINE matrix_slice &operator = (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_slice &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_slice& operator += (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_slice &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_slice& operator -= (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_slice &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_slice& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_slice& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_slice &ms) const { return (*this).data_.same_closure (ms.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_slice &ms) const { return (*this).data_ == ms.data_ && s1_ == ms.s1_ && s2_ == ms.s2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_slice ms) { if (this != &ms) { BOOST_UBLAS_CHECK (size1 () == ms.size1 (), bad_size ()); BOOST_UBLAS_CHECK (size2 () == ms.size2 (), bad_size ()); matrix_swap (*this, ms); } } BOOST_UBLAS_INLINE friend void swap (matrix_slice ms1, matrix_slice ms2) { ms1.swap (ms2); } // Iterator types private: // Use slice as an index - FIXME this fails for packed assignment typedef typename slice_type::const_iterator const_subiterator1_type; typedef typename slice_type::const_iterator subiterator1_type; typedef typename slice_type::const_iterator const_subiterator2_type; typedef typename slice_type::const_iterator subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1, typename matrix_type::iterator1::iterator_category> iterator1; typedef indexed_iterator2, typename matrix_type::iterator2::iterator_category> iterator2; typedef indexed_const_iterator1, typename matrix_type::const_iterator1::iterator_category> const_iterator1; typedef indexed_const_iterator2, typename matrix_type::const_iterator2::iterator_category> const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, s1_.begin () + i, s2_.begin () + j); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, s1_.begin () + i, s2_.begin () + j); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, s1_.begin () + i, s2_.begin () + j); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, s1_.begin () + i, s2_.begin () + j); #endif } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::const_iterator1::value_type value_type; typedef typename M::const_iterator1::difference_type difference_type; typedef typename M::const_reference reference; //FIXME due to indexing access typedef typename M::const_iterator1::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &ms, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (ms), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return const_iterator2 ((*this) (), it1_, it2_ ().begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return const_iterator2 ((*this) (), it1_, it2_ ().end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::iterator1::value_type value_type; typedef typename M::iterator1::difference_type difference_type; typedef typename M::reference reference; //FIXME due to indexing access typedef typename M::iterator1::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &ms, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (ms), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return iterator2 ((*this) (), it1_, it2_ ().begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return iterator2 ((*this) (), it1_, it2_ ().end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::const_iterator2::value_type value_type; typedef typename M::const_iterator2::difference_type difference_type; typedef typename M::const_reference reference; //FIXME due to indexing access typedef typename M::const_iterator2::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &ms, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (ms), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return const_iterator1 ((*this) (), it1_ ().begin (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return const_iterator1 ((*this) (), it1_ ().end (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::iterator2::value_type value_type; typedef typename M::iterator2::difference_type difference_type; typedef typename M::reference reference; //FIXME due to indexing access typedef typename M::iterator2::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &ms, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (ms), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return iterator1 ((*this) (), it1_ ().begin (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return iterator1 ((*this) (), it1_ ().end (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; slice_type s1_; slice_type s2_; }; // Simple Projections template BOOST_UBLAS_INLINE matrix_slice subslice (M &data, typename M::size_type start1, typename M::difference_type stride1, typename M::size_type size1, typename M::size_type start2, typename M::difference_type stride2, typename M::size_type size2) { typedef basic_slice slice_type; return matrix_slice (data, slice_type (start1, stride1, size1), slice_type (start2, stride2, size2)); } template BOOST_UBLAS_INLINE matrix_slice subslice (const M &data, typename M::size_type start1, typename M::difference_type stride1, typename M::size_type size1, typename M::size_type start2, typename M::difference_type stride2, typename M::size_type size2) { typedef basic_slice slice_type; return matrix_slice (data (), slice_type (start1, stride1, size1), slice_type (start2, stride2, size2)); } // Generic Projections template BOOST_UBLAS_INLINE matrix_slice project (M &data, const typename matrix_slice::slice_type &s1, const typename matrix_slice::slice_type &s2) { return matrix_slice (data, s1, s2); } template BOOST_UBLAS_INLINE const matrix_slice project (const M &data, const typename matrix_slice::slice_type &s1, const typename matrix_slice::slice_type &s2) { // ISSUE was: return matrix_slice (const_cast (data), s1, s2); return matrix_slice (data, s1, s2); } // ISSUE in the following two functions it would be logical to use matrix_slice::range_type but this confuses VC7.1 and 8.0 template BOOST_UBLAS_INLINE matrix_slice project (matrix_slice &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { return data.project (r1, r2); } template BOOST_UBLAS_INLINE const matrix_slice project (const matrix_slice &data, const typename matrix_range::range_type &r1, const typename matrix_range::range_type &r2) { return data.project (r1, r2); } template BOOST_UBLAS_INLINE matrix_slice project (matrix_slice &data, const typename matrix_slice::slice_type &s1, const typename matrix_slice::slice_type &s2) { return data.project (s1, s2); } template BOOST_UBLAS_INLINE const matrix_slice project (const matrix_slice &data, const typename matrix_slice::slice_type &s1, const typename matrix_slice::slice_type &s2) { return data.project (s1, s2); } // Specialization of temporary_traits template struct matrix_temporary_traits< matrix_slice > : matrix_temporary_traits< M > {}; template struct vector_temporary_traits< matrix_slice > : vector_temporary_traits< M > {}; // Matrix based indirection class // Contributed by Toon Knapen. // Extended and optimized by Kresimir Fresl. template class matrix_indirect: public matrix_expression > { typedef matrix_indirect self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression::operator (); #endif typedef M matrix_type; typedef IA indirect_array_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::const_reference const_reference; typedef typename boost::mpl::if_, typename M::const_reference, typename M::reference>::type reference; typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef basic_range range_type; typedef basic_slice slice_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE matrix_indirect (matrix_type &data, size_type size1, size_type size2): data_ (data), ia1_ (size1), ia2_ (size2) {} BOOST_UBLAS_INLINE matrix_indirect (matrix_type &data, const indirect_array_type &ia1, const indirect_array_type &ia2): data_ (data), ia1_ (ia1.preprocess (data.size1 ())), ia2_ (ia2.preprocess (data.size2 ())) {} BOOST_UBLAS_INLINE matrix_indirect (const matrix_closure_type &data, const indirect_array_type &ia1, const indirect_array_type &ia2, int): data_ (data), ia1_ (ia1.preprocess (data.size1 ())), ia2_ (ia2.preprocess (data.size2 ())) {} // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return ia1_.size (); } BOOST_UBLAS_INLINE size_type size2 () const { return ia2_.size (); } BOOST_UBLAS_INLINE const indirect_array_type &indirect1 () const { return ia1_; } BOOST_UBLAS_INLINE indirect_array_type &indirect1 () { return ia1_; } BOOST_UBLAS_INLINE const indirect_array_type &indirect2 () const { return ia2_; } BOOST_UBLAS_INLINE indirect_array_type &indirect2 () { return ia2_; } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data_ (ia1_ (i), ia2_ (j)); } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return data_ (ia1_ (i), ia2_ (j)); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { return data_ (ia1_ (i), ia2_ (j)); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that matrix_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE matrix_indirect project (const range_type &r1, const range_type &r2) const { return matrix_indirect (data_, ia1_.compose (r1.preprocess (data_.size1 ())), ia2_.compose (r2.preprocess (data_.size2 ())), 0); } BOOST_UBLAS_INLINE matrix_indirect project (const slice_type &s1, const slice_type &s2) const { return matrix_indirect (data_, ia1_.compose (s1.preprocess (data_.size1 ())), ia2_.compose (s2.preprocess (data_.size2 ())), 0); } BOOST_UBLAS_INLINE matrix_indirect project (const indirect_array_type &ia1, const indirect_array_type &ia2) const { return matrix_indirect (data_, ia1_.compose (ia1.preprocess (data_.size1 ())), ia2_.compose (ia2.preprocess (data_.size2 ())), 0); } // Assignment BOOST_UBLAS_INLINE matrix_indirect &operator = (const matrix_indirect &mi) { matrix_assign (*this, mi); return *this; } BOOST_UBLAS_INLINE matrix_indirect &assign_temporary (matrix_indirect &mi) { return *this = mi; } template BOOST_UBLAS_INLINE matrix_indirect &operator = (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE matrix_indirect &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_indirect& operator += (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE matrix_indirect &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_indirect& operator -= (const matrix_expression &ae) { matrix_assign (*this, typename matrix_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE matrix_indirect &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE matrix_indirect& operator *= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE matrix_indirect& operator /= (const AT &at) { matrix_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const matrix_indirect &mi) const { return (*this).data_.same_closure (mi.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const matrix_indirect &mi) const { return (*this).data_ == mi.data_ && ia1_ == mi.ia1_ && ia2_ == mi.ia2_; } // Swapping BOOST_UBLAS_INLINE void swap (matrix_indirect mi) { if (this != &mi) { BOOST_UBLAS_CHECK (size1 () == mi.size1 (), bad_size ()); BOOST_UBLAS_CHECK (size2 () == mi.size2 (), bad_size ()); matrix_swap (*this, mi); } } BOOST_UBLAS_INLINE friend void swap (matrix_indirect mi1, matrix_indirect mi2) { mi1.swap (mi2); } // Iterator types private: typedef typename IA::const_iterator const_subiterator1_type; typedef typename IA::const_iterator subiterator1_type; typedef typename IA::const_iterator const_subiterator2_type; typedef typename IA::const_iterator subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1, typename matrix_type::iterator1::iterator_category> iterator1; typedef indexed_iterator2, typename matrix_type::iterator2::iterator_category> iterator2; typedef indexed_const_iterator1, typename matrix_type::const_iterator1::iterator_category> const_iterator1; typedef indexed_const_iterator2, typename matrix_type::const_iterator2::iterator_category> const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j); #else return const_iterator1 (*this, ia1_.begin () + i, ia2_.begin () + j); #endif } BOOST_UBLAS_INLINE iterator1 find1 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j); #else return iterator1 (*this, ia1_.begin () + i, ia2_.begin () + j); #endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j); #else return const_iterator2 (*this, ia1_.begin () + i, ia2_.begin () + j); #endif } BOOST_UBLAS_INLINE iterator2 find2 (int /* rank */, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j); #else return iterator2 (*this, ia1_.begin () + i, ia2_.begin () + j); #endif } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::const_iterator1::value_type value_type; typedef typename M::const_iterator1::difference_type difference_type; typedef typename M::const_reference reference; //FIXME due to indexing access typedef typename M::const_iterator1::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &mi, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (mi), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return const_iterator2 ((*this) (), it1_, it2_ ().begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return const_iterator2 ((*this) (), it1_, it2_ ().end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::iterator1::value_type value_type; typedef typename M::iterator1::difference_type difference_type; typedef typename M::reference reference; //FIXME due to indexing access typedef typename M::iterator1::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &mi, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (mi), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return iterator2 ((*this) (), it1_, it2_ ().begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return iterator2 ((*this) (), it1_, it2_ ().end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::const_iterator2::value_type value_type; typedef typename M::const_iterator2::difference_type difference_type; typedef typename M::const_reference reference; //FIXME due to indexing access typedef typename M::const_iterator2::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &mi, const const_subiterator1_type &it1, const const_subiterator2_type &it2): container_const_reference (mi), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return const_iterator1 ((*this) (), it1_ ().begin (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return const_iterator1 ((*this) (), it1_ ().end (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: const_subiterator1_type it1_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename M::iterator2::value_type value_type; typedef typename M::iterator2::difference_type difference_type; typedef typename M::reference reference; //FIXME due to indexing access typedef typename M::iterator2::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &mi, const subiterator1_type &it1, const subiterator2_type &it2): container_reference (mi), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element return (*this) ().data_ (*it1_, *it2_); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return iterator1 ((*this) (), it1_ ().begin (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return iterator1 ((*this) (), it1_ ().end (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: subiterator1_type it1_; subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; indirect_array_type ia1_; indirect_array_type ia2_; }; // Projections template BOOST_UBLAS_INLINE matrix_indirect > project (M &data, const indirect_array &ia1, const indirect_array &ia2) { return matrix_indirect > (data, ia1, ia2); } template BOOST_UBLAS_INLINE const matrix_indirect > project (const M &data, const indirect_array &ia1, const indirect_array &ia2) { // ISSUE was: return matrix_indirect > (const_cast (data), ia1, ia2); return matrix_indirect > (data, ia1, ia2); } template BOOST_UBLAS_INLINE matrix_indirect project (matrix_indirect &data, const typename matrix_indirect::range_type &r1, const typename matrix_indirect::range_type &r2) { return data.project (r1, r2); } template BOOST_UBLAS_INLINE const matrix_indirect project (const matrix_indirect &data, const typename matrix_indirect::range_type &r1, const typename matrix_indirect::range_type &r2) { return data.project (r1, r2); } template BOOST_UBLAS_INLINE matrix_indirect project (matrix_indirect &data, const typename matrix_indirect::slice_type &s1, const typename matrix_indirect::slice_type &s2) { return data.project (s1, s2); } template BOOST_UBLAS_INLINE const matrix_indirect project (const matrix_indirect &data, const typename matrix_indirect::slice_type &s1, const typename matrix_indirect::slice_type &s2) { return data.project (s1, s2); } template BOOST_UBLAS_INLINE matrix_indirect > project (matrix_indirect > &data, const indirect_array &ia1, const indirect_array &ia2) { return data.project (ia1, ia2); } template BOOST_UBLAS_INLINE const matrix_indirect > project (const matrix_indirect > &data, const indirect_array &ia1, const indirect_array &ia2) { return data.project (ia1, ia2); } /// Specialization of temporary_traits template struct matrix_temporary_traits< matrix_indirect > : matrix_temporary_traits< M > {}; template struct vector_temporary_traits< matrix_indirect > : vector_temporary_traits< M > {}; }}} #endif