[857] | 1 | // Copyright (C) 2000, 2001 Stephen Cleary
|
---|
| 2 | //
|
---|
| 3 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
| 4 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
| 5 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 6 | //
|
---|
| 7 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
| 8 |
|
---|
| 9 | #ifndef BOOST_POOL_HPP
|
---|
| 10 | #define BOOST_POOL_HPP
|
---|
| 11 |
|
---|
| 12 | #include <boost/config.hpp> // for workarounds
|
---|
| 13 |
|
---|
| 14 | // std::less, std::less_equal, std::greater
|
---|
| 15 | #include <functional>
|
---|
| 16 | // new[], delete[], std::nothrow
|
---|
| 17 | #include <new>
|
---|
| 18 | // std::size_t, std::ptrdiff_t
|
---|
| 19 | #include <cstddef>
|
---|
| 20 | // std::malloc, std::free
|
---|
| 21 | #include <cstdlib>
|
---|
| 22 | // std::invalid_argument
|
---|
| 23 | #include <exception>
|
---|
| 24 | // std::max
|
---|
| 25 | #include <algorithm>
|
---|
| 26 |
|
---|
| 27 | #include <boost/pool/poolfwd.hpp>
|
---|
| 28 |
|
---|
| 29 | // boost::details::pool::ct_lcm
|
---|
| 30 | #include <boost/pool/detail/ct_gcd_lcm.hpp>
|
---|
| 31 | // boost::details::pool::lcm
|
---|
| 32 | #include <boost/pool/detail/gcd_lcm.hpp>
|
---|
| 33 | // boost::simple_segregated_storage
|
---|
| 34 | #include <boost/pool/simple_segregated_storage.hpp>
|
---|
| 35 |
|
---|
| 36 | #ifdef BOOST_NO_STDC_NAMESPACE
|
---|
| 37 | namespace std { using ::malloc; using ::free; }
|
---|
| 38 | #endif
|
---|
| 39 |
|
---|
| 40 | // There are a few places in this file where the expression "this->m" is used.
|
---|
| 41 | // This expression is used to force instantiation-time name lookup, which I am
|
---|
| 42 | // informed is required for strict Standard compliance. It's only necessary
|
---|
| 43 | // if "m" is a member of a base class that is dependent on a template
|
---|
| 44 | // parameter.
|
---|
| 45 | // Thanks to Jens Maurer for pointing this out!
|
---|
| 46 |
|
---|
| 47 | namespace boost {
|
---|
| 48 |
|
---|
| 49 | struct default_user_allocator_new_delete
|
---|
| 50 | {
|
---|
| 51 | typedef std::size_t size_type;
|
---|
| 52 | typedef std::ptrdiff_t difference_type;
|
---|
| 53 |
|
---|
| 54 | static char * malloc(const size_type bytes)
|
---|
| 55 | { return new (std::nothrow) char[bytes]; }
|
---|
| 56 | static void free(char * const block)
|
---|
| 57 | { delete [] block; }
|
---|
| 58 | };
|
---|
| 59 |
|
---|
| 60 | struct default_user_allocator_malloc_free
|
---|
| 61 | {
|
---|
| 62 | typedef std::size_t size_type;
|
---|
| 63 | typedef std::ptrdiff_t difference_type;
|
---|
| 64 |
|
---|
| 65 | static char * malloc(const size_type bytes)
|
---|
| 66 | { return reinterpret_cast<char *>(std::malloc(bytes)); }
|
---|
| 67 | static void free(char * const block)
|
---|
| 68 | { std::free(block); }
|
---|
| 69 | };
|
---|
| 70 |
|
---|
| 71 | namespace details {
|
---|
| 72 |
|
---|
| 73 | // PODptr is a class that pretends to be a "pointer" to different class types
|
---|
| 74 | // that don't really exist. It provides member functions to access the "data"
|
---|
| 75 | // of the "object" it points to. Since these "class" types are of variable
|
---|
| 76 | // size, and contains some information at the *end* of its memory (for
|
---|
| 77 | // alignment reasons), PODptr must contain the size of this "class" as well as
|
---|
| 78 | // the pointer to this "object".
|
---|
| 79 | template <typename SizeType>
|
---|
| 80 | class PODptr
|
---|
| 81 | {
|
---|
| 82 | public:
|
---|
| 83 | typedef SizeType size_type;
|
---|
| 84 |
|
---|
| 85 | private:
|
---|
| 86 | char * ptr;
|
---|
| 87 | size_type sz;
|
---|
| 88 |
|
---|
| 89 | char * ptr_next_size() const
|
---|
| 90 | { return (ptr + sz - sizeof(size_type)); }
|
---|
| 91 | char * ptr_next_ptr() const
|
---|
| 92 | {
|
---|
| 93 | return (ptr_next_size() -
|
---|
| 94 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | public:
|
---|
| 98 | PODptr(char * const nptr, const size_type nsize)
|
---|
| 99 | :ptr(nptr), sz(nsize) { }
|
---|
| 100 | PODptr()
|
---|
| 101 | :ptr(0), sz(0) { }
|
---|
| 102 |
|
---|
| 103 | bool valid() const { return (begin() != 0); }
|
---|
| 104 | void invalidate() { begin() = 0; }
|
---|
| 105 | char * & begin() { return ptr; }
|
---|
| 106 | char * begin() const { return ptr; }
|
---|
| 107 | char * end() const { return ptr_next_ptr(); }
|
---|
| 108 | size_type total_size() const { return sz; }
|
---|
| 109 | size_type element_size() const
|
---|
| 110 | {
|
---|
| 111 | return (sz - sizeof(size_type) -
|
---|
| 112 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | size_type & next_size() const
|
---|
| 116 | { return *(reinterpret_cast<size_type *>(ptr_next_size())); }
|
---|
| 117 | char * & next_ptr() const
|
---|
| 118 | { return *(reinterpret_cast<char **>(ptr_next_ptr())); }
|
---|
| 119 |
|
---|
| 120 | PODptr next() const
|
---|
| 121 | { return PODptr<size_type>(next_ptr(), next_size()); }
|
---|
| 122 | void next(const PODptr & arg) const
|
---|
| 123 | {
|
---|
| 124 | next_ptr() = arg.begin();
|
---|
| 125 | next_size() = arg.total_size();
|
---|
| 126 | }
|
---|
| 127 | };
|
---|
| 128 |
|
---|
| 129 | } // namespace details
|
---|
| 130 |
|
---|
| 131 | template <typename UserAllocator>
|
---|
| 132 | class pool: protected simple_segregated_storage<
|
---|
| 133 | typename UserAllocator::size_type>
|
---|
| 134 | {
|
---|
| 135 | public:
|
---|
| 136 | typedef UserAllocator user_allocator;
|
---|
| 137 | typedef typename UserAllocator::size_type size_type;
|
---|
| 138 | typedef typename UserAllocator::difference_type difference_type;
|
---|
| 139 |
|
---|
| 140 | private:
|
---|
| 141 | BOOST_STATIC_CONSTANT(unsigned, min_alloc_size =
|
---|
| 142 | (::boost::details::pool::ct_lcm<sizeof(void *), sizeof(size_type)>::value) );
|
---|
| 143 |
|
---|
| 144 | // Returns 0 if out-of-memory
|
---|
| 145 | // Called if malloc/ordered_malloc needs to resize the free list
|
---|
| 146 | void * malloc_need_resize();
|
---|
| 147 | void * ordered_malloc_need_resize();
|
---|
| 148 |
|
---|
| 149 | protected:
|
---|
| 150 | details::PODptr<size_type> list;
|
---|
| 151 |
|
---|
| 152 | simple_segregated_storage<size_type> & store() { return *this; }
|
---|
| 153 | const simple_segregated_storage<size_type> & store() const { return *this; }
|
---|
| 154 | const size_type requested_size;
|
---|
| 155 | size_type next_size;
|
---|
| 156 |
|
---|
| 157 | // finds which POD in the list 'chunk' was allocated from
|
---|
| 158 | details::PODptr<size_type> find_POD(void * const chunk) const;
|
---|
| 159 |
|
---|
| 160 | // is_from() tests a chunk to determine if it belongs in a block
|
---|
| 161 | static bool is_from(void * const chunk, char * const i,
|
---|
| 162 | const size_type sizeof_i)
|
---|
| 163 | {
|
---|
| 164 | // We use std::less_equal and std::less to test 'chunk'
|
---|
| 165 | // against the array bounds because standard operators
|
---|
| 166 | // may return unspecified results.
|
---|
| 167 | // This is to ensure portability. The operators < <= > >= are only
|
---|
| 168 | // defined for pointers to objects that are 1) in the same array, or
|
---|
| 169 | // 2) subobjects of the same object [5.9/2].
|
---|
| 170 | // The functor objects guarantee a total order for any pointer [20.3.3/8]
|
---|
| 171 | //WAS:
|
---|
| 172 | // return (std::less_equal<void *>()(static_cast<void *>(i), chunk)
|
---|
| 173 | // && std::less<void *>()(chunk,
|
---|
| 174 | // static_cast<void *>(i + sizeof_i)));
|
---|
| 175 | std::less_equal<void *> lt_eq;
|
---|
| 176 | std::less<void *> lt;
|
---|
| 177 | return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | size_type alloc_size() const
|
---|
| 181 | {
|
---|
| 182 | const unsigned min_size = min_alloc_size;
|
---|
| 183 | return details::pool::lcm<size_type>(requested_size, min_size);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | // for the sake of code readability :)
|
---|
| 187 | static void * & nextof(void * const ptr)
|
---|
| 188 | { return *(static_cast<void **>(ptr)); }
|
---|
| 189 |
|
---|
| 190 | public:
|
---|
| 191 | // The second parameter here is an extension!
|
---|
| 192 | // pre: npartition_size != 0 && nnext_size != 0
|
---|
| 193 | explicit pool(const size_type nrequested_size,
|
---|
| 194 | const size_type nnext_size = 32)
|
---|
| 195 | :list(0, 0), requested_size(nrequested_size), next_size(nnext_size)
|
---|
| 196 | { }
|
---|
| 197 |
|
---|
| 198 | ~pool() { purge_memory(); }
|
---|
| 199 |
|
---|
| 200 | // Releases memory blocks that don't have chunks allocated
|
---|
| 201 | // pre: lists are ordered
|
---|
| 202 | // Returns true if memory was actually deallocated
|
---|
| 203 | bool release_memory();
|
---|
| 204 |
|
---|
| 205 | // Releases *all* memory blocks, even if chunks are still allocated
|
---|
| 206 | // Returns true if memory was actually deallocated
|
---|
| 207 | bool purge_memory();
|
---|
| 208 |
|
---|
| 209 | // These functions are extensions!
|
---|
| 210 | size_type get_next_size() const { return next_size; }
|
---|
| 211 | void set_next_size(const size_type nnext_size) { next_size = nnext_size; }
|
---|
| 212 |
|
---|
| 213 | // Both malloc and ordered_malloc do a quick inlined check first for any
|
---|
| 214 | // free chunks. Only if we need to get another memory block do we call
|
---|
| 215 | // the non-inlined *_need_resize() functions.
|
---|
| 216 | // Returns 0 if out-of-memory
|
---|
| 217 | void * malloc()
|
---|
| 218 | {
|
---|
| 219 | // Look for a non-empty storage
|
---|
| 220 | if (!store().empty())
|
---|
| 221 | return store().malloc();
|
---|
| 222 | return malloc_need_resize();
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | void * ordered_malloc()
|
---|
| 226 | {
|
---|
| 227 | // Look for a non-empty storage
|
---|
| 228 | if (!store().empty())
|
---|
| 229 | return store().malloc();
|
---|
| 230 | return ordered_malloc_need_resize();
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | // Returns 0 if out-of-memory
|
---|
| 234 | // Allocate a contiguous section of n chunks
|
---|
| 235 | void * ordered_malloc(size_type n);
|
---|
| 236 |
|
---|
| 237 | // pre: 'chunk' must have been previously
|
---|
| 238 | // returned by *this.malloc().
|
---|
| 239 | void free(void * const chunk)
|
---|
| 240 | { store().free(chunk); }
|
---|
| 241 |
|
---|
| 242 | // pre: 'chunk' must have been previously
|
---|
| 243 | // returned by *this.malloc().
|
---|
| 244 | void ordered_free(void * const chunk)
|
---|
| 245 | { store().ordered_free(chunk); }
|
---|
| 246 |
|
---|
| 247 | // pre: 'chunk' must have been previously
|
---|
| 248 | // returned by *this.malloc(n).
|
---|
| 249 | void free(void * const chunks, const size_type n)
|
---|
| 250 | {
|
---|
| 251 | const size_type partition_size = alloc_size();
|
---|
| 252 | const size_type total_req_size = n * requested_size;
|
---|
| 253 | const size_type num_chunks = total_req_size / partition_size +
|
---|
| 254 | static_cast<bool>(total_req_size % partition_size);
|
---|
| 255 |
|
---|
| 256 | store().free_n(chunks, num_chunks, partition_size);
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | // pre: 'chunk' must have been previously
|
---|
| 260 | // returned by *this.malloc(n).
|
---|
| 261 | void ordered_free(void * const chunks, const size_type n)
|
---|
| 262 | {
|
---|
| 263 | const size_type partition_size = alloc_size();
|
---|
| 264 | const size_type total_req_size = n * requested_size;
|
---|
| 265 | const size_type num_chunks = total_req_size / partition_size +
|
---|
| 266 | static_cast<bool>(total_req_size % partition_size);
|
---|
| 267 |
|
---|
| 268 | store().ordered_free_n(chunks, num_chunks, partition_size);
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | // is_from() tests a chunk to determine if it was allocated from *this
|
---|
| 272 | bool is_from(void * const chunk) const
|
---|
| 273 | {
|
---|
| 274 | return (find_POD(chunk).valid());
|
---|
| 275 | }
|
---|
| 276 | };
|
---|
| 277 |
|
---|
| 278 | template <typename UserAllocator>
|
---|
| 279 | bool pool<UserAllocator>::release_memory()
|
---|
| 280 | {
|
---|
| 281 | // This is the return value: it will be set to true when we actually call
|
---|
| 282 | // UserAllocator::free(..)
|
---|
| 283 | bool ret = false;
|
---|
| 284 |
|
---|
| 285 | // This is a current & previous iterator pair over the memory block list
|
---|
| 286 | details::PODptr<size_type> ptr = list;
|
---|
| 287 | details::PODptr<size_type> prev;
|
---|
| 288 |
|
---|
| 289 | // This is a current & previous iterator pair over the free memory chunk list
|
---|
| 290 | // Note that "prev_free" in this case does NOT point to the previous memory
|
---|
| 291 | // chunk in the free list, but rather the last free memory chunk before the
|
---|
| 292 | // current block.
|
---|
| 293 | void * free = this->first;
|
---|
| 294 | void * prev_free = 0;
|
---|
| 295 |
|
---|
| 296 | const size_type partition_size = alloc_size();
|
---|
| 297 |
|
---|
| 298 | // Search through all the all the allocated memory blocks
|
---|
| 299 | while (ptr.valid())
|
---|
| 300 | {
|
---|
| 301 | // At this point:
|
---|
| 302 | // ptr points to a valid memory block
|
---|
| 303 | // free points to either:
|
---|
| 304 | // 0 if there are no more free chunks
|
---|
| 305 | // the first free chunk in this or some next memory block
|
---|
| 306 | // prev_free points to either:
|
---|
| 307 | // the last free chunk in some previous memory block
|
---|
| 308 | // 0 if there is no such free chunk
|
---|
| 309 | // prev is either:
|
---|
| 310 | // the PODptr whose next() is ptr
|
---|
| 311 | // !valid() if there is no such PODptr
|
---|
| 312 |
|
---|
| 313 | // If there are no more free memory chunks, then every remaining
|
---|
| 314 | // block is allocated out to its fullest capacity, and we can't
|
---|
| 315 | // release any more memory
|
---|
| 316 | if (free == 0)
|
---|
| 317 | return ret;
|
---|
| 318 |
|
---|
| 319 | // We have to check all the chunks. If they are *all* free (i.e., present
|
---|
| 320 | // in the free list), then we can free the block.
|
---|
| 321 | bool all_chunks_free = true;
|
---|
| 322 |
|
---|
| 323 | // Iterate 'i' through all chunks in the memory block
|
---|
| 324 | // if free starts in the memory block, be careful to keep it there
|
---|
| 325 | void * saved_free = free;
|
---|
| 326 | for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
|
---|
| 327 | {
|
---|
| 328 | // If this chunk is not free
|
---|
| 329 | if (i != free)
|
---|
| 330 | {
|
---|
| 331 | // We won't be able to free this block
|
---|
| 332 | all_chunks_free = false;
|
---|
| 333 |
|
---|
| 334 | // free might have travelled outside ptr
|
---|
| 335 | free = saved_free;
|
---|
| 336 | // Abort searching the chunks; we won't be able to free this
|
---|
| 337 | // block because a chunk is not free.
|
---|
| 338 | break;
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | // We do not increment prev_free because we are in the same block
|
---|
| 342 | free = nextof(free);
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | // post: if the memory block has any chunks, free points to one of them
|
---|
| 346 | // otherwise, our assertions above are still valid
|
---|
| 347 |
|
---|
| 348 | const details::PODptr<size_type> next = ptr.next();
|
---|
| 349 |
|
---|
| 350 | if (!all_chunks_free)
|
---|
| 351 | {
|
---|
| 352 | if (is_from(free, ptr.begin(), ptr.element_size()))
|
---|
| 353 | {
|
---|
| 354 | std::less<void *> lt;
|
---|
| 355 | void * const end = ptr.end();
|
---|
| 356 | do
|
---|
| 357 | {
|
---|
| 358 | prev_free = free;
|
---|
| 359 | free = nextof(free);
|
---|
| 360 | } while (free && lt(free, end));
|
---|
| 361 | }
|
---|
| 362 | // This invariant is now restored:
|
---|
| 363 | // free points to the first free chunk in some next memory block, or
|
---|
| 364 | // 0 if there is no such chunk.
|
---|
| 365 | // prev_free points to the last free chunk in this memory block.
|
---|
| 366 |
|
---|
| 367 | // We are just about to advance ptr. Maintain the invariant:
|
---|
| 368 | // prev is the PODptr whose next() is ptr, or !valid()
|
---|
| 369 | // if there is no such PODptr
|
---|
| 370 | prev = ptr;
|
---|
| 371 | }
|
---|
| 372 | else
|
---|
| 373 | {
|
---|
| 374 | // All chunks from this block are free
|
---|
| 375 |
|
---|
| 376 | // Remove block from list
|
---|
| 377 | if (prev.valid())
|
---|
| 378 | prev.next(next);
|
---|
| 379 | else
|
---|
| 380 | list = next;
|
---|
| 381 |
|
---|
| 382 | // Remove all entries in the free list from this block
|
---|
| 383 | if (prev_free != 0)
|
---|
| 384 | nextof(prev_free) = free;
|
---|
| 385 | else
|
---|
| 386 | this->first = free;
|
---|
| 387 |
|
---|
| 388 | // And release memory
|
---|
| 389 | UserAllocator::free(ptr.begin());
|
---|
| 390 | ret = true;
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | // Increment ptr
|
---|
| 394 | ptr = next;
|
---|
| 395 | }
|
---|
| 396 |
|
---|
| 397 | return ret;
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | template <typename UserAllocator>
|
---|
| 401 | bool pool<UserAllocator>::purge_memory()
|
---|
| 402 | {
|
---|
| 403 | details::PODptr<size_type> iter = list;
|
---|
| 404 |
|
---|
| 405 | if (!iter.valid())
|
---|
| 406 | return false;
|
---|
| 407 |
|
---|
| 408 | do
|
---|
| 409 | {
|
---|
| 410 | // hold "next" pointer
|
---|
| 411 | const details::PODptr<size_type> next = iter.next();
|
---|
| 412 |
|
---|
| 413 | // delete the storage
|
---|
| 414 | UserAllocator::free(iter.begin());
|
---|
| 415 |
|
---|
| 416 | // increment iter
|
---|
| 417 | iter = next;
|
---|
| 418 | } while (iter.valid());
|
---|
| 419 |
|
---|
| 420 | list.invalidate();
|
---|
| 421 | this->first = 0;
|
---|
| 422 |
|
---|
| 423 | return true;
|
---|
| 424 | }
|
---|
| 425 |
|
---|
| 426 | template <typename UserAllocator>
|
---|
| 427 | void * pool<UserAllocator>::malloc_need_resize()
|
---|
| 428 | {
|
---|
| 429 | // No memory in any of our storages; make a new storage,
|
---|
| 430 | const size_type partition_size = alloc_size();
|
---|
| 431 | const size_type POD_size = next_size * partition_size +
|
---|
| 432 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
| 433 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
| 434 | if (ptr == 0)
|
---|
| 435 | return 0;
|
---|
| 436 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
| 437 | next_size <<= 1;
|
---|
| 438 |
|
---|
| 439 | // initialize it,
|
---|
| 440 | store().add_block(node.begin(), node.element_size(), partition_size);
|
---|
| 441 |
|
---|
| 442 | // insert it into the list,
|
---|
| 443 | node.next(list);
|
---|
| 444 | list = node;
|
---|
| 445 |
|
---|
| 446 | // and return a chunk from it.
|
---|
| 447 | return store().malloc();
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 | template <typename UserAllocator>
|
---|
| 451 | void * pool<UserAllocator>::ordered_malloc_need_resize()
|
---|
| 452 | {
|
---|
| 453 | // No memory in any of our storages; make a new storage,
|
---|
| 454 | const size_type partition_size = alloc_size();
|
---|
| 455 | const size_type POD_size = next_size * partition_size +
|
---|
| 456 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
| 457 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
| 458 | if (ptr == 0)
|
---|
| 459 | return 0;
|
---|
| 460 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
| 461 | next_size <<= 1;
|
---|
| 462 |
|
---|
| 463 | // initialize it,
|
---|
| 464 | // (we can use "add_block" here because we know that
|
---|
| 465 | // the free list is empty, so we don't have to use
|
---|
| 466 | // the slower ordered version)
|
---|
| 467 | store().add_block(node.begin(), node.element_size(), partition_size);
|
---|
| 468 |
|
---|
| 469 | // insert it into the list,
|
---|
| 470 | // handle border case
|
---|
| 471 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
|
---|
| 472 | {
|
---|
| 473 | node.next(list);
|
---|
| 474 | list = node;
|
---|
| 475 | }
|
---|
| 476 | else
|
---|
| 477 | {
|
---|
| 478 | details::PODptr<size_type> prev = list;
|
---|
| 479 |
|
---|
| 480 | while (true)
|
---|
| 481 | {
|
---|
| 482 | // if we're about to hit the end or
|
---|
| 483 | // if we've found where "node" goes
|
---|
| 484 | if (prev.next_ptr() == 0
|
---|
| 485 | || std::greater<void *>()(prev.next_ptr(), node.begin()))
|
---|
| 486 | break;
|
---|
| 487 |
|
---|
| 488 | prev = prev.next();
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | node.next(prev.next());
|
---|
| 492 | prev.next(node);
|
---|
| 493 | }
|
---|
| 494 |
|
---|
| 495 | // and return a chunk from it.
|
---|
| 496 | return store().malloc();
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | template <typename UserAllocator>
|
---|
| 500 | void * pool<UserAllocator>::ordered_malloc(const size_type n)
|
---|
| 501 | {
|
---|
| 502 | const size_type partition_size = alloc_size();
|
---|
| 503 | const size_type total_req_size = n * requested_size;
|
---|
| 504 | const size_type num_chunks = total_req_size / partition_size +
|
---|
| 505 | static_cast<bool>(total_req_size % partition_size);
|
---|
| 506 |
|
---|
| 507 | void * ret = store().malloc_n(num_chunks, partition_size);
|
---|
| 508 |
|
---|
| 509 | if (ret != 0)
|
---|
| 510 | return ret;
|
---|
| 511 |
|
---|
| 512 | // Not enougn memory in our storages; make a new storage,
|
---|
| 513 | BOOST_USING_STD_MAX();
|
---|
| 514 | next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
|
---|
| 515 | const size_type POD_size = next_size * partition_size +
|
---|
| 516 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
| 517 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
| 518 | if (ptr == 0)
|
---|
| 519 | return 0;
|
---|
| 520 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
| 521 |
|
---|
| 522 | // Split up block so we can use what wasn't requested
|
---|
| 523 | // (we can use "add_block" here because we know that
|
---|
| 524 | // the free list is empty, so we don't have to use
|
---|
| 525 | // the slower ordered version)
|
---|
| 526 | if (next_size > num_chunks)
|
---|
| 527 | store().add_block(node.begin() + num_chunks * partition_size,
|
---|
| 528 | node.element_size() - num_chunks * partition_size, partition_size);
|
---|
| 529 |
|
---|
| 530 | next_size <<= 1;
|
---|
| 531 |
|
---|
| 532 | // insert it into the list,
|
---|
| 533 | // handle border case
|
---|
| 534 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
|
---|
| 535 | {
|
---|
| 536 | node.next(list);
|
---|
| 537 | list = node;
|
---|
| 538 | }
|
---|
| 539 | else
|
---|
| 540 | {
|
---|
| 541 | details::PODptr<size_type> prev = list;
|
---|
| 542 |
|
---|
| 543 | while (true)
|
---|
| 544 | {
|
---|
| 545 | // if we're about to hit the end or
|
---|
| 546 | // if we've found where "node" goes
|
---|
| 547 | if (prev.next_ptr() == 0
|
---|
| 548 | || std::greater<void *>()(prev.next_ptr(), node.begin()))
|
---|
| 549 | break;
|
---|
| 550 |
|
---|
| 551 | prev = prev.next();
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | node.next(prev.next());
|
---|
| 555 | prev.next(node);
|
---|
| 556 | }
|
---|
| 557 |
|
---|
| 558 | // and return it.
|
---|
| 559 | return node.begin();
|
---|
| 560 | }
|
---|
| 561 |
|
---|
| 562 | template <typename UserAllocator>
|
---|
| 563 | details::PODptr<typename pool<UserAllocator>::size_type>
|
---|
| 564 | pool<UserAllocator>::find_POD(void * const chunk) const
|
---|
| 565 | {
|
---|
| 566 | // We have to find which storage this chunk is from.
|
---|
| 567 | details::PODptr<size_type> iter = list;
|
---|
| 568 | while (iter.valid())
|
---|
| 569 | {
|
---|
| 570 | if (is_from(chunk, iter.begin(), iter.element_size()))
|
---|
| 571 | return iter;
|
---|
| 572 | iter = iter.next();
|
---|
| 573 | }
|
---|
| 574 |
|
---|
| 575 | return iter;
|
---|
| 576 | }
|
---|
| 577 |
|
---|
| 578 | } // namespace boost
|
---|
| 579 |
|
---|
| 580 | #endif
|
---|