1 | // Copyright (C) 2000, 2001 Stephen Cleary
|
---|
2 | //
|
---|
3 | // Distributed under the Boost Software License, Version 1.0. (See
|
---|
4 | // accompanying file LICENSE_1_0.txt or copy at
|
---|
5 | // http://www.boost.org/LICENSE_1_0.txt)
|
---|
6 | //
|
---|
7 | // See http://www.boost.org for updates, documentation, and revision history.
|
---|
8 |
|
---|
9 | #ifndef BOOST_POOL_HPP
|
---|
10 | #define BOOST_POOL_HPP
|
---|
11 |
|
---|
12 | #include <boost/config.hpp> // for workarounds
|
---|
13 |
|
---|
14 | // std::less, std::less_equal, std::greater
|
---|
15 | #include <functional>
|
---|
16 | // new[], delete[], std::nothrow
|
---|
17 | #include <new>
|
---|
18 | // std::size_t, std::ptrdiff_t
|
---|
19 | #include <cstddef>
|
---|
20 | // std::malloc, std::free
|
---|
21 | #include <cstdlib>
|
---|
22 | // std::invalid_argument
|
---|
23 | #include <exception>
|
---|
24 | // std::max
|
---|
25 | #include <algorithm>
|
---|
26 |
|
---|
27 | #include <boost/pool/poolfwd.hpp>
|
---|
28 |
|
---|
29 | // boost::details::pool::ct_lcm
|
---|
30 | #include <boost/pool/detail/ct_gcd_lcm.hpp>
|
---|
31 | // boost::details::pool::lcm
|
---|
32 | #include <boost/pool/detail/gcd_lcm.hpp>
|
---|
33 | // boost::simple_segregated_storage
|
---|
34 | #include <boost/pool/simple_segregated_storage.hpp>
|
---|
35 |
|
---|
36 | #ifdef BOOST_NO_STDC_NAMESPACE
|
---|
37 | namespace std { using ::malloc; using ::free; }
|
---|
38 | #endif
|
---|
39 |
|
---|
40 | // There are a few places in this file where the expression "this->m" is used.
|
---|
41 | // This expression is used to force instantiation-time name lookup, which I am
|
---|
42 | // informed is required for strict Standard compliance. It's only necessary
|
---|
43 | // if "m" is a member of a base class that is dependent on a template
|
---|
44 | // parameter.
|
---|
45 | // Thanks to Jens Maurer for pointing this out!
|
---|
46 |
|
---|
47 | namespace boost {
|
---|
48 |
|
---|
49 | struct default_user_allocator_new_delete
|
---|
50 | {
|
---|
51 | typedef std::size_t size_type;
|
---|
52 | typedef std::ptrdiff_t difference_type;
|
---|
53 |
|
---|
54 | static char * malloc(const size_type bytes)
|
---|
55 | { return new (std::nothrow) char[bytes]; }
|
---|
56 | static void free(char * const block)
|
---|
57 | { delete [] block; }
|
---|
58 | };
|
---|
59 |
|
---|
60 | struct default_user_allocator_malloc_free
|
---|
61 | {
|
---|
62 | typedef std::size_t size_type;
|
---|
63 | typedef std::ptrdiff_t difference_type;
|
---|
64 |
|
---|
65 | static char * malloc(const size_type bytes)
|
---|
66 | { return reinterpret_cast<char *>(std::malloc(bytes)); }
|
---|
67 | static void free(char * const block)
|
---|
68 | { std::free(block); }
|
---|
69 | };
|
---|
70 |
|
---|
71 | namespace details {
|
---|
72 |
|
---|
73 | // PODptr is a class that pretends to be a "pointer" to different class types
|
---|
74 | // that don't really exist. It provides member functions to access the "data"
|
---|
75 | // of the "object" it points to. Since these "class" types are of variable
|
---|
76 | // size, and contains some information at the *end* of its memory (for
|
---|
77 | // alignment reasons), PODptr must contain the size of this "class" as well as
|
---|
78 | // the pointer to this "object".
|
---|
79 | template <typename SizeType>
|
---|
80 | class PODptr
|
---|
81 | {
|
---|
82 | public:
|
---|
83 | typedef SizeType size_type;
|
---|
84 |
|
---|
85 | private:
|
---|
86 | char * ptr;
|
---|
87 | size_type sz;
|
---|
88 |
|
---|
89 | char * ptr_next_size() const
|
---|
90 | { return (ptr + sz - sizeof(size_type)); }
|
---|
91 | char * ptr_next_ptr() const
|
---|
92 | {
|
---|
93 | return (ptr_next_size() -
|
---|
94 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
|
---|
95 | }
|
---|
96 |
|
---|
97 | public:
|
---|
98 | PODptr(char * const nptr, const size_type nsize)
|
---|
99 | :ptr(nptr), sz(nsize) { }
|
---|
100 | PODptr()
|
---|
101 | :ptr(0), sz(0) { }
|
---|
102 |
|
---|
103 | bool valid() const { return (begin() != 0); }
|
---|
104 | void invalidate() { begin() = 0; }
|
---|
105 | char * & begin() { return ptr; }
|
---|
106 | char * begin() const { return ptr; }
|
---|
107 | char * end() const { return ptr_next_ptr(); }
|
---|
108 | size_type total_size() const { return sz; }
|
---|
109 | size_type element_size() const
|
---|
110 | {
|
---|
111 | return (sz - sizeof(size_type) -
|
---|
112 | pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value);
|
---|
113 | }
|
---|
114 |
|
---|
115 | size_type & next_size() const
|
---|
116 | { return *(reinterpret_cast<size_type *>(ptr_next_size())); }
|
---|
117 | char * & next_ptr() const
|
---|
118 | { return *(reinterpret_cast<char **>(ptr_next_ptr())); }
|
---|
119 |
|
---|
120 | PODptr next() const
|
---|
121 | { return PODptr<size_type>(next_ptr(), next_size()); }
|
---|
122 | void next(const PODptr & arg) const
|
---|
123 | {
|
---|
124 | next_ptr() = arg.begin();
|
---|
125 | next_size() = arg.total_size();
|
---|
126 | }
|
---|
127 | };
|
---|
128 |
|
---|
129 | } // namespace details
|
---|
130 |
|
---|
131 | template <typename UserAllocator>
|
---|
132 | class pool: protected simple_segregated_storage<
|
---|
133 | typename UserAllocator::size_type>
|
---|
134 | {
|
---|
135 | public:
|
---|
136 | typedef UserAllocator user_allocator;
|
---|
137 | typedef typename UserAllocator::size_type size_type;
|
---|
138 | typedef typename UserAllocator::difference_type difference_type;
|
---|
139 |
|
---|
140 | private:
|
---|
141 | BOOST_STATIC_CONSTANT(unsigned, min_alloc_size =
|
---|
142 | (::boost::details::pool::ct_lcm<sizeof(void *), sizeof(size_type)>::value) );
|
---|
143 |
|
---|
144 | // Returns 0 if out-of-memory
|
---|
145 | // Called if malloc/ordered_malloc needs to resize the free list
|
---|
146 | void * malloc_need_resize();
|
---|
147 | void * ordered_malloc_need_resize();
|
---|
148 |
|
---|
149 | protected:
|
---|
150 | details::PODptr<size_type> list;
|
---|
151 |
|
---|
152 | simple_segregated_storage<size_type> & store() { return *this; }
|
---|
153 | const simple_segregated_storage<size_type> & store() const { return *this; }
|
---|
154 | const size_type requested_size;
|
---|
155 | size_type next_size;
|
---|
156 |
|
---|
157 | // finds which POD in the list 'chunk' was allocated from
|
---|
158 | details::PODptr<size_type> find_POD(void * const chunk) const;
|
---|
159 |
|
---|
160 | // is_from() tests a chunk to determine if it belongs in a block
|
---|
161 | static bool is_from(void * const chunk, char * const i,
|
---|
162 | const size_type sizeof_i)
|
---|
163 | {
|
---|
164 | // We use std::less_equal and std::less to test 'chunk'
|
---|
165 | // against the array bounds because standard operators
|
---|
166 | // may return unspecified results.
|
---|
167 | // This is to ensure portability. The operators < <= > >= are only
|
---|
168 | // defined for pointers to objects that are 1) in the same array, or
|
---|
169 | // 2) subobjects of the same object [5.9/2].
|
---|
170 | // The functor objects guarantee a total order for any pointer [20.3.3/8]
|
---|
171 | //WAS:
|
---|
172 | // return (std::less_equal<void *>()(static_cast<void *>(i), chunk)
|
---|
173 | // && std::less<void *>()(chunk,
|
---|
174 | // static_cast<void *>(i + sizeof_i)));
|
---|
175 | std::less_equal<void *> lt_eq;
|
---|
176 | std::less<void *> lt;
|
---|
177 | return (lt_eq(i, chunk) && lt(chunk, i + sizeof_i));
|
---|
178 | }
|
---|
179 |
|
---|
180 | size_type alloc_size() const
|
---|
181 | {
|
---|
182 | const unsigned min_size = min_alloc_size;
|
---|
183 | return details::pool::lcm<size_type>(requested_size, min_size);
|
---|
184 | }
|
---|
185 |
|
---|
186 | // for the sake of code readability :)
|
---|
187 | static void * & nextof(void * const ptr)
|
---|
188 | { return *(static_cast<void **>(ptr)); }
|
---|
189 |
|
---|
190 | public:
|
---|
191 | // The second parameter here is an extension!
|
---|
192 | // pre: npartition_size != 0 && nnext_size != 0
|
---|
193 | explicit pool(const size_type nrequested_size,
|
---|
194 | const size_type nnext_size = 32)
|
---|
195 | :list(0, 0), requested_size(nrequested_size), next_size(nnext_size)
|
---|
196 | { }
|
---|
197 |
|
---|
198 | ~pool() { purge_memory(); }
|
---|
199 |
|
---|
200 | // Releases memory blocks that don't have chunks allocated
|
---|
201 | // pre: lists are ordered
|
---|
202 | // Returns true if memory was actually deallocated
|
---|
203 | bool release_memory();
|
---|
204 |
|
---|
205 | // Releases *all* memory blocks, even if chunks are still allocated
|
---|
206 | // Returns true if memory was actually deallocated
|
---|
207 | bool purge_memory();
|
---|
208 |
|
---|
209 | // These functions are extensions!
|
---|
210 | size_type get_next_size() const { return next_size; }
|
---|
211 | void set_next_size(const size_type nnext_size) { next_size = nnext_size; }
|
---|
212 |
|
---|
213 | // Both malloc and ordered_malloc do a quick inlined check first for any
|
---|
214 | // free chunks. Only if we need to get another memory block do we call
|
---|
215 | // the non-inlined *_need_resize() functions.
|
---|
216 | // Returns 0 if out-of-memory
|
---|
217 | void * malloc()
|
---|
218 | {
|
---|
219 | // Look for a non-empty storage
|
---|
220 | if (!store().empty())
|
---|
221 | return store().malloc();
|
---|
222 | return malloc_need_resize();
|
---|
223 | }
|
---|
224 |
|
---|
225 | void * ordered_malloc()
|
---|
226 | {
|
---|
227 | // Look for a non-empty storage
|
---|
228 | if (!store().empty())
|
---|
229 | return store().malloc();
|
---|
230 | return ordered_malloc_need_resize();
|
---|
231 | }
|
---|
232 |
|
---|
233 | // Returns 0 if out-of-memory
|
---|
234 | // Allocate a contiguous section of n chunks
|
---|
235 | void * ordered_malloc(size_type n);
|
---|
236 |
|
---|
237 | // pre: 'chunk' must have been previously
|
---|
238 | // returned by *this.malloc().
|
---|
239 | void free(void * const chunk)
|
---|
240 | { store().free(chunk); }
|
---|
241 |
|
---|
242 | // pre: 'chunk' must have been previously
|
---|
243 | // returned by *this.malloc().
|
---|
244 | void ordered_free(void * const chunk)
|
---|
245 | { store().ordered_free(chunk); }
|
---|
246 |
|
---|
247 | // pre: 'chunk' must have been previously
|
---|
248 | // returned by *this.malloc(n).
|
---|
249 | void free(void * const chunks, const size_type n)
|
---|
250 | {
|
---|
251 | const size_type partition_size = alloc_size();
|
---|
252 | const size_type total_req_size = n * requested_size;
|
---|
253 | const size_type num_chunks = total_req_size / partition_size +
|
---|
254 | static_cast<bool>(total_req_size % partition_size);
|
---|
255 |
|
---|
256 | store().free_n(chunks, num_chunks, partition_size);
|
---|
257 | }
|
---|
258 |
|
---|
259 | // pre: 'chunk' must have been previously
|
---|
260 | // returned by *this.malloc(n).
|
---|
261 | void ordered_free(void * const chunks, const size_type n)
|
---|
262 | {
|
---|
263 | const size_type partition_size = alloc_size();
|
---|
264 | const size_type total_req_size = n * requested_size;
|
---|
265 | const size_type num_chunks = total_req_size / partition_size +
|
---|
266 | static_cast<bool>(total_req_size % partition_size);
|
---|
267 |
|
---|
268 | store().ordered_free_n(chunks, num_chunks, partition_size);
|
---|
269 | }
|
---|
270 |
|
---|
271 | // is_from() tests a chunk to determine if it was allocated from *this
|
---|
272 | bool is_from(void * const chunk) const
|
---|
273 | {
|
---|
274 | return (find_POD(chunk).valid());
|
---|
275 | }
|
---|
276 | };
|
---|
277 |
|
---|
278 | template <typename UserAllocator>
|
---|
279 | bool pool<UserAllocator>::release_memory()
|
---|
280 | {
|
---|
281 | // This is the return value: it will be set to true when we actually call
|
---|
282 | // UserAllocator::free(..)
|
---|
283 | bool ret = false;
|
---|
284 |
|
---|
285 | // This is a current & previous iterator pair over the memory block list
|
---|
286 | details::PODptr<size_type> ptr = list;
|
---|
287 | details::PODptr<size_type> prev;
|
---|
288 |
|
---|
289 | // This is a current & previous iterator pair over the free memory chunk list
|
---|
290 | // Note that "prev_free" in this case does NOT point to the previous memory
|
---|
291 | // chunk in the free list, but rather the last free memory chunk before the
|
---|
292 | // current block.
|
---|
293 | void * free = this->first;
|
---|
294 | void * prev_free = 0;
|
---|
295 |
|
---|
296 | const size_type partition_size = alloc_size();
|
---|
297 |
|
---|
298 | // Search through all the all the allocated memory blocks
|
---|
299 | while (ptr.valid())
|
---|
300 | {
|
---|
301 | // At this point:
|
---|
302 | // ptr points to a valid memory block
|
---|
303 | // free points to either:
|
---|
304 | // 0 if there are no more free chunks
|
---|
305 | // the first free chunk in this or some next memory block
|
---|
306 | // prev_free points to either:
|
---|
307 | // the last free chunk in some previous memory block
|
---|
308 | // 0 if there is no such free chunk
|
---|
309 | // prev is either:
|
---|
310 | // the PODptr whose next() is ptr
|
---|
311 | // !valid() if there is no such PODptr
|
---|
312 |
|
---|
313 | // If there are no more free memory chunks, then every remaining
|
---|
314 | // block is allocated out to its fullest capacity, and we can't
|
---|
315 | // release any more memory
|
---|
316 | if (free == 0)
|
---|
317 | return ret;
|
---|
318 |
|
---|
319 | // We have to check all the chunks. If they are *all* free (i.e., present
|
---|
320 | // in the free list), then we can free the block.
|
---|
321 | bool all_chunks_free = true;
|
---|
322 |
|
---|
323 | // Iterate 'i' through all chunks in the memory block
|
---|
324 | // if free starts in the memory block, be careful to keep it there
|
---|
325 | void * saved_free = free;
|
---|
326 | for (char * i = ptr.begin(); i != ptr.end(); i += partition_size)
|
---|
327 | {
|
---|
328 | // If this chunk is not free
|
---|
329 | if (i != free)
|
---|
330 | {
|
---|
331 | // We won't be able to free this block
|
---|
332 | all_chunks_free = false;
|
---|
333 |
|
---|
334 | // free might have travelled outside ptr
|
---|
335 | free = saved_free;
|
---|
336 | // Abort searching the chunks; we won't be able to free this
|
---|
337 | // block because a chunk is not free.
|
---|
338 | break;
|
---|
339 | }
|
---|
340 |
|
---|
341 | // We do not increment prev_free because we are in the same block
|
---|
342 | free = nextof(free);
|
---|
343 | }
|
---|
344 |
|
---|
345 | // post: if the memory block has any chunks, free points to one of them
|
---|
346 | // otherwise, our assertions above are still valid
|
---|
347 |
|
---|
348 | const details::PODptr<size_type> next = ptr.next();
|
---|
349 |
|
---|
350 | if (!all_chunks_free)
|
---|
351 | {
|
---|
352 | if (is_from(free, ptr.begin(), ptr.element_size()))
|
---|
353 | {
|
---|
354 | std::less<void *> lt;
|
---|
355 | void * const end = ptr.end();
|
---|
356 | do
|
---|
357 | {
|
---|
358 | prev_free = free;
|
---|
359 | free = nextof(free);
|
---|
360 | } while (free && lt(free, end));
|
---|
361 | }
|
---|
362 | // This invariant is now restored:
|
---|
363 | // free points to the first free chunk in some next memory block, or
|
---|
364 | // 0 if there is no such chunk.
|
---|
365 | // prev_free points to the last free chunk in this memory block.
|
---|
366 |
|
---|
367 | // We are just about to advance ptr. Maintain the invariant:
|
---|
368 | // prev is the PODptr whose next() is ptr, or !valid()
|
---|
369 | // if there is no such PODptr
|
---|
370 | prev = ptr;
|
---|
371 | }
|
---|
372 | else
|
---|
373 | {
|
---|
374 | // All chunks from this block are free
|
---|
375 |
|
---|
376 | // Remove block from list
|
---|
377 | if (prev.valid())
|
---|
378 | prev.next(next);
|
---|
379 | else
|
---|
380 | list = next;
|
---|
381 |
|
---|
382 | // Remove all entries in the free list from this block
|
---|
383 | if (prev_free != 0)
|
---|
384 | nextof(prev_free) = free;
|
---|
385 | else
|
---|
386 | this->first = free;
|
---|
387 |
|
---|
388 | // And release memory
|
---|
389 | UserAllocator::free(ptr.begin());
|
---|
390 | ret = true;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // Increment ptr
|
---|
394 | ptr = next;
|
---|
395 | }
|
---|
396 |
|
---|
397 | return ret;
|
---|
398 | }
|
---|
399 |
|
---|
400 | template <typename UserAllocator>
|
---|
401 | bool pool<UserAllocator>::purge_memory()
|
---|
402 | {
|
---|
403 | details::PODptr<size_type> iter = list;
|
---|
404 |
|
---|
405 | if (!iter.valid())
|
---|
406 | return false;
|
---|
407 |
|
---|
408 | do
|
---|
409 | {
|
---|
410 | // hold "next" pointer
|
---|
411 | const details::PODptr<size_type> next = iter.next();
|
---|
412 |
|
---|
413 | // delete the storage
|
---|
414 | UserAllocator::free(iter.begin());
|
---|
415 |
|
---|
416 | // increment iter
|
---|
417 | iter = next;
|
---|
418 | } while (iter.valid());
|
---|
419 |
|
---|
420 | list.invalidate();
|
---|
421 | this->first = 0;
|
---|
422 |
|
---|
423 | return true;
|
---|
424 | }
|
---|
425 |
|
---|
426 | template <typename UserAllocator>
|
---|
427 | void * pool<UserAllocator>::malloc_need_resize()
|
---|
428 | {
|
---|
429 | // No memory in any of our storages; make a new storage,
|
---|
430 | const size_type partition_size = alloc_size();
|
---|
431 | const size_type POD_size = next_size * partition_size +
|
---|
432 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
433 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
434 | if (ptr == 0)
|
---|
435 | return 0;
|
---|
436 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
437 | next_size <<= 1;
|
---|
438 |
|
---|
439 | // initialize it,
|
---|
440 | store().add_block(node.begin(), node.element_size(), partition_size);
|
---|
441 |
|
---|
442 | // insert it into the list,
|
---|
443 | node.next(list);
|
---|
444 | list = node;
|
---|
445 |
|
---|
446 | // and return a chunk from it.
|
---|
447 | return store().malloc();
|
---|
448 | }
|
---|
449 |
|
---|
450 | template <typename UserAllocator>
|
---|
451 | void * pool<UserAllocator>::ordered_malloc_need_resize()
|
---|
452 | {
|
---|
453 | // No memory in any of our storages; make a new storage,
|
---|
454 | const size_type partition_size = alloc_size();
|
---|
455 | const size_type POD_size = next_size * partition_size +
|
---|
456 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
457 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
458 | if (ptr == 0)
|
---|
459 | return 0;
|
---|
460 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
461 | next_size <<= 1;
|
---|
462 |
|
---|
463 | // initialize it,
|
---|
464 | // (we can use "add_block" here because we know that
|
---|
465 | // the free list is empty, so we don't have to use
|
---|
466 | // the slower ordered version)
|
---|
467 | store().add_block(node.begin(), node.element_size(), partition_size);
|
---|
468 |
|
---|
469 | // insert it into the list,
|
---|
470 | // handle border case
|
---|
471 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
|
---|
472 | {
|
---|
473 | node.next(list);
|
---|
474 | list = node;
|
---|
475 | }
|
---|
476 | else
|
---|
477 | {
|
---|
478 | details::PODptr<size_type> prev = list;
|
---|
479 |
|
---|
480 | while (true)
|
---|
481 | {
|
---|
482 | // if we're about to hit the end or
|
---|
483 | // if we've found where "node" goes
|
---|
484 | if (prev.next_ptr() == 0
|
---|
485 | || std::greater<void *>()(prev.next_ptr(), node.begin()))
|
---|
486 | break;
|
---|
487 |
|
---|
488 | prev = prev.next();
|
---|
489 | }
|
---|
490 |
|
---|
491 | node.next(prev.next());
|
---|
492 | prev.next(node);
|
---|
493 | }
|
---|
494 |
|
---|
495 | // and return a chunk from it.
|
---|
496 | return store().malloc();
|
---|
497 | }
|
---|
498 |
|
---|
499 | template <typename UserAllocator>
|
---|
500 | void * pool<UserAllocator>::ordered_malloc(const size_type n)
|
---|
501 | {
|
---|
502 | const size_type partition_size = alloc_size();
|
---|
503 | const size_type total_req_size = n * requested_size;
|
---|
504 | const size_type num_chunks = total_req_size / partition_size +
|
---|
505 | static_cast<bool>(total_req_size % partition_size);
|
---|
506 |
|
---|
507 | void * ret = store().malloc_n(num_chunks, partition_size);
|
---|
508 |
|
---|
509 | if (ret != 0)
|
---|
510 | return ret;
|
---|
511 |
|
---|
512 | // Not enougn memory in our storages; make a new storage,
|
---|
513 | BOOST_USING_STD_MAX();
|
---|
514 | next_size = max BOOST_PREVENT_MACRO_SUBSTITUTION(next_size, num_chunks);
|
---|
515 | const size_type POD_size = next_size * partition_size +
|
---|
516 | details::pool::ct_lcm<sizeof(size_type), sizeof(void *)>::value + sizeof(size_type);
|
---|
517 | char * const ptr = UserAllocator::malloc(POD_size);
|
---|
518 | if (ptr == 0)
|
---|
519 | return 0;
|
---|
520 | const details::PODptr<size_type> node(ptr, POD_size);
|
---|
521 |
|
---|
522 | // Split up block so we can use what wasn't requested
|
---|
523 | // (we can use "add_block" here because we know that
|
---|
524 | // the free list is empty, so we don't have to use
|
---|
525 | // the slower ordered version)
|
---|
526 | if (next_size > num_chunks)
|
---|
527 | store().add_block(node.begin() + num_chunks * partition_size,
|
---|
528 | node.element_size() - num_chunks * partition_size, partition_size);
|
---|
529 |
|
---|
530 | next_size <<= 1;
|
---|
531 |
|
---|
532 | // insert it into the list,
|
---|
533 | // handle border case
|
---|
534 | if (!list.valid() || std::greater<void *>()(list.begin(), node.begin()))
|
---|
535 | {
|
---|
536 | node.next(list);
|
---|
537 | list = node;
|
---|
538 | }
|
---|
539 | else
|
---|
540 | {
|
---|
541 | details::PODptr<size_type> prev = list;
|
---|
542 |
|
---|
543 | while (true)
|
---|
544 | {
|
---|
545 | // if we're about to hit the end or
|
---|
546 | // if we've found where "node" goes
|
---|
547 | if (prev.next_ptr() == 0
|
---|
548 | || std::greater<void *>()(prev.next_ptr(), node.begin()))
|
---|
549 | break;
|
---|
550 |
|
---|
551 | prev = prev.next();
|
---|
552 | }
|
---|
553 |
|
---|
554 | node.next(prev.next());
|
---|
555 | prev.next(node);
|
---|
556 | }
|
---|
557 |
|
---|
558 | // and return it.
|
---|
559 | return node.begin();
|
---|
560 | }
|
---|
561 |
|
---|
562 | template <typename UserAllocator>
|
---|
563 | details::PODptr<typename pool<UserAllocator>::size_type>
|
---|
564 | pool<UserAllocator>::find_POD(void * const chunk) const
|
---|
565 | {
|
---|
566 | // We have to find which storage this chunk is from.
|
---|
567 | details::PODptr<size_type> iter = list;
|
---|
568 | while (iter.valid())
|
---|
569 | {
|
---|
570 | if (is_from(chunk, iter.begin(), iter.element_size()))
|
---|
571 | return iter;
|
---|
572 | iter = iter.next();
|
---|
573 | }
|
---|
574 |
|
---|
575 | return iter;
|
---|
576 | }
|
---|
577 |
|
---|
578 | } // namespace boost
|
---|
579 |
|
---|
580 | #endif
|
---|