[857] | 1 | #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|
| 2 | #define BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|
| 3 |
|
---|
| 4 | // Copyright (c) 2004 Jonathan Brandmeyer
|
---|
| 5 | // Use, modification and distribution are subject to the
|
---|
| 6 | // Boost Software License, Version 1.0. (See accompanying file
|
---|
| 7 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
---|
| 8 |
|
---|
| 9 | #include <boost/python/detail/prefix.hpp>
|
---|
| 10 | #include <boost/config.hpp>
|
---|
| 11 | #include <boost/python/object.hpp>
|
---|
| 12 | #include <boost/python/extract.hpp>
|
---|
| 13 | #include <boost/python/converter/pytype_object_mgr_traits.hpp>
|
---|
| 14 |
|
---|
| 15 | #include <boost/iterator/iterator_traits.hpp>
|
---|
| 16 |
|
---|
| 17 | #include <iterator>
|
---|
| 18 | #include <algorithm>
|
---|
| 19 |
|
---|
| 20 | namespace boost { namespace python {
|
---|
| 21 |
|
---|
| 22 | namespace detail
|
---|
| 23 | {
|
---|
| 24 | class BOOST_PYTHON_DECL slice_base : public object
|
---|
| 25 | {
|
---|
| 26 | public:
|
---|
| 27 | // Get the Python objects associated with the slice. In principle, these
|
---|
| 28 | // may be any arbitrary Python type, but in practice they are usually
|
---|
| 29 | // integers. If one or more parameter is ommited in the Python expression
|
---|
| 30 | // that created this slice, than that parameter is None here, and compares
|
---|
| 31 | // equal to a default-constructed boost::python::object.
|
---|
| 32 | // If a user-defined type wishes to support slicing, then support for the
|
---|
| 33 | // special meaning associated with negative indicies is up to the user.
|
---|
| 34 | object start() const;
|
---|
| 35 | object stop() const;
|
---|
| 36 | object step() const;
|
---|
| 37 |
|
---|
| 38 | protected:
|
---|
| 39 | explicit slice_base(PyObject*, PyObject*, PyObject*);
|
---|
| 40 |
|
---|
| 41 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
|
---|
| 42 | };
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | class slice : public detail::slice_base
|
---|
| 46 | {
|
---|
| 47 | typedef detail::slice_base base;
|
---|
| 48 | public:
|
---|
| 49 | // Equivalent to slice(::)
|
---|
| 50 | slice() : base(0,0,0) {}
|
---|
| 51 |
|
---|
| 52 | // Each argument must be slice_nil, or implicitly convertable to object.
|
---|
| 53 | // They should normally be integers.
|
---|
| 54 | template<typename Integer1, typename Integer2>
|
---|
| 55 | slice( Integer1 start, Integer2 stop)
|
---|
| 56 | : base( object(start).ptr(), object(stop).ptr(), 0 )
|
---|
| 57 | {}
|
---|
| 58 |
|
---|
| 59 | template<typename Integer1, typename Integer2, typename Integer3>
|
---|
| 60 | slice( Integer1 start, Integer2 stop, Integer3 stride)
|
---|
| 61 | : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
|
---|
| 62 | {}
|
---|
| 63 |
|
---|
| 64 | // The following algorithm is intended to automate the process of
|
---|
| 65 | // determining a slice range when you want to fully support negative
|
---|
| 66 | // indicies and non-singular step sizes. Its functionallity is simmilar to
|
---|
| 67 | // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
|
---|
| 68 | // This template returns a slice::range struct that, when used in the
|
---|
| 69 | // following iterative loop, will traverse a slice of the function's
|
---|
| 70 | // arguments.
|
---|
| 71 | // while (start != end) {
|
---|
| 72 | // do_foo(...);
|
---|
| 73 | // std::advance( start, step);
|
---|
| 74 | // }
|
---|
| 75 | // do_foo(...); // repeat exactly once more.
|
---|
| 76 |
|
---|
| 77 | // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
|
---|
| 78 |
|
---|
| 79 | // Return: slice::range, where start and stop define a _closed_ interval
|
---|
| 80 | // that covers at most [begin, end-1] of the provided arguments, and a step
|
---|
| 81 | // that is non-zero.
|
---|
| 82 |
|
---|
| 83 | // Throws: error_already_set() if any of the indices are neither None nor
|
---|
| 84 | // integers, or the slice has a step value of zero.
|
---|
| 85 | // std::invalid_argument if the resulting range would be empty. Normally,
|
---|
| 86 | // you should catch this exception and return an empty sequence of the
|
---|
| 87 | // appropriate type.
|
---|
| 88 |
|
---|
| 89 | // Performance: constant time for random-access iterators.
|
---|
| 90 |
|
---|
| 91 | // Rationale:
|
---|
| 92 | // closed-interval: If an open interval were used, then for a non-singular
|
---|
| 93 | // value for step, the required state for the end iterator could be
|
---|
| 94 | // beyond the one-past-the-end postion of the specified range. While
|
---|
| 95 | // probably harmless, the behavior of STL-conforming iterators is
|
---|
| 96 | // undefined in this case.
|
---|
| 97 | // exceptions on zero-length range: It is impossible to define a closed
|
---|
| 98 | // interval over an empty range, so some other form of error checking
|
---|
| 99 | // would have to be used by the user to prevent undefined behavior. In
|
---|
| 100 | // the case where the user fails to catch the exception, it will simply
|
---|
| 101 | // be translated to Python by the default exception handling mechanisms.
|
---|
| 102 |
|
---|
| 103 | template<typename RandomAccessIterator>
|
---|
| 104 | struct range
|
---|
| 105 | {
|
---|
| 106 | RandomAccessIterator start;
|
---|
| 107 | RandomAccessIterator stop;
|
---|
| 108 | typename iterator_difference<RandomAccessIterator>::type step;
|
---|
| 109 | };
|
---|
| 110 |
|
---|
| 111 | template<typename RandomAccessIterator>
|
---|
| 112 | slice::range<RandomAccessIterator>
|
---|
| 113 | get_indicies( const RandomAccessIterator& begin,
|
---|
| 114 | const RandomAccessIterator& end) const
|
---|
| 115 | {
|
---|
| 116 | // This is based loosely on PySlice_GetIndicesEx(), but it has been
|
---|
| 117 | // carefully crafted to ensure that these iterators never fall out of
|
---|
| 118 | // the range of the container.
|
---|
| 119 | slice::range<RandomAccessIterator> ret;
|
---|
| 120 |
|
---|
| 121 | typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
|
---|
| 122 | difference_type max_dist = boost::detail::distance(begin, end);
|
---|
| 123 |
|
---|
| 124 | object slice_start = this->start();
|
---|
| 125 | object slice_stop = this->stop();
|
---|
| 126 | object slice_step = this->step();
|
---|
| 127 |
|
---|
| 128 | // Extract the step.
|
---|
| 129 | if (slice_step == object()) {
|
---|
| 130 | ret.step = 1;
|
---|
| 131 | }
|
---|
| 132 | else {
|
---|
| 133 | ret.step = extract<long>( slice_step);
|
---|
| 134 | if (ret.step == 0) {
|
---|
| 135 | PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
|
---|
| 136 | throw_error_already_set();
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | // Setup the start iterator.
|
---|
| 141 | if (slice_start == object()) {
|
---|
| 142 | if (ret.step < 0) {
|
---|
| 143 | ret.start = end;
|
---|
| 144 | --ret.start;
|
---|
| 145 | }
|
---|
| 146 | else
|
---|
| 147 | ret.start = begin;
|
---|
| 148 | }
|
---|
| 149 | else {
|
---|
| 150 | difference_type i = extract<long>( slice_start);
|
---|
| 151 | if (i >= max_dist && ret.step > 0)
|
---|
| 152 | throw std::invalid_argument( "Zero-length slice");
|
---|
| 153 | if (i >= 0) {
|
---|
| 154 | ret.start = begin;
|
---|
| 155 | BOOST_USING_STD_MIN();
|
---|
| 156 | std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
|
---|
| 157 | }
|
---|
| 158 | else {
|
---|
| 159 | if (i < -max_dist && ret.step < 0)
|
---|
| 160 | throw std::invalid_argument( "Zero-length slice");
|
---|
| 161 | ret.start = end;
|
---|
| 162 | // Advance start (towards begin) not farther than begin.
|
---|
| 163 | std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | // Set up the stop iterator. This one is a little trickier since slices
|
---|
| 168 | // define a [) range, and we are returning a [] range.
|
---|
| 169 | if (slice_stop == object()) {
|
---|
| 170 | if (ret.step < 0) {
|
---|
| 171 | ret.stop = begin;
|
---|
| 172 | }
|
---|
| 173 | else {
|
---|
| 174 | ret.stop = end;
|
---|
| 175 | std::advance( ret.stop, -1);
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | else {
|
---|
| 179 | difference_type i = extract<long>(slice_stop);
|
---|
| 180 | // First, branch on which direction we are going with this.
|
---|
| 181 | if (ret.step < 0) {
|
---|
| 182 | if (i+1 >= max_dist || i == -1)
|
---|
| 183 | throw std::invalid_argument( "Zero-length slice");
|
---|
| 184 |
|
---|
| 185 | if (i >= 0) {
|
---|
| 186 | ret.stop = begin;
|
---|
| 187 | std::advance( ret.stop, i+1);
|
---|
| 188 | }
|
---|
| 189 | else { // i is negative, but more negative than -1.
|
---|
| 190 | ret.stop = end;
|
---|
| 191 | std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 | else { // stepping forward
|
---|
| 195 | if (i == 0 || -i >= max_dist)
|
---|
| 196 | throw std::invalid_argument( "Zero-length slice");
|
---|
| 197 |
|
---|
| 198 | if (i > 0) {
|
---|
| 199 | ret.stop = begin;
|
---|
| 200 | std::advance( ret.stop, (std::min)( i-1, max_dist-1));
|
---|
| 201 | }
|
---|
| 202 | else { // i is negative, but not more negative than -max_dist
|
---|
| 203 | ret.stop = end;
|
---|
| 204 | std::advance( ret.stop, i-1);
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | // Now the fun part, handling the possibilites surrounding step.
|
---|
| 210 | // At this point, step has been initialized, ret.stop, and ret.step
|
---|
| 211 | // represent the widest possible range that could be traveled
|
---|
| 212 | // (inclusive), and final_dist is the maximum distance covered by the
|
---|
| 213 | // slice.
|
---|
| 214 | typename iterator_difference<RandomAccessIterator>::type final_dist =
|
---|
| 215 | boost::detail::distance( ret.start, ret.stop);
|
---|
| 216 |
|
---|
| 217 | // First case, if both ret.start and ret.stop are equal, then step
|
---|
| 218 | // is irrelevant and we can return here.
|
---|
| 219 | if (final_dist == 0)
|
---|
| 220 | return ret;
|
---|
| 221 |
|
---|
| 222 | // Second, if there is a sign mismatch, than the resulting range and
|
---|
| 223 | // step size conflict: std::advance( ret.start, ret.step) goes away from
|
---|
| 224 | // ret.stop.
|
---|
| 225 | if ((final_dist > 0) != (ret.step > 0))
|
---|
| 226 | throw std::invalid_argument( "Zero-length slice.");
|
---|
| 227 |
|
---|
| 228 | // Finally, if the last step puts us past the end, we move ret.stop
|
---|
| 229 | // towards ret.start in the amount of the remainder.
|
---|
| 230 | // I don't remember all of the oolies surrounding negative modulii,
|
---|
| 231 | // so I am handling each of these cases separately.
|
---|
| 232 | if (final_dist < 0) {
|
---|
| 233 | difference_type remainder = -final_dist % -ret.step;
|
---|
| 234 | std::advance( ret.stop, remainder);
|
---|
| 235 | }
|
---|
| 236 | else {
|
---|
| 237 | difference_type remainder = final_dist % ret.step;
|
---|
| 238 | std::advance( ret.stop, -remainder);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | return ret;
|
---|
| 242 | }
|
---|
| 243 |
|
---|
| 244 | public:
|
---|
| 245 | // This declaration, in conjunction with the specialization of
|
---|
| 246 | // object_manager_traits<> below, allows C++ functions accepting slice
|
---|
| 247 | // arguments to be called from from Python. These constructors should never
|
---|
| 248 | // be used in client code.
|
---|
| 249 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
|
---|
| 250 | };
|
---|
| 251 |
|
---|
| 252 |
|
---|
| 253 | namespace converter {
|
---|
| 254 |
|
---|
| 255 | template<>
|
---|
| 256 | struct object_manager_traits<slice>
|
---|
| 257 | : pytype_object_manager_traits<&PySlice_Type, slice>
|
---|
| 258 | {
|
---|
| 259 | };
|
---|
| 260 |
|
---|
| 261 | } // !namesapce converter
|
---|
| 262 |
|
---|
| 263 | } } // !namespace ::boost::python
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|