1 | #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|
2 | #define BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|
3 |
|
---|
4 | // Copyright (c) 2004 Jonathan Brandmeyer
|
---|
5 | // Use, modification and distribution are subject to the
|
---|
6 | // Boost Software License, Version 1.0. (See accompanying file
|
---|
7 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
---|
8 |
|
---|
9 | #include <boost/python/detail/prefix.hpp>
|
---|
10 | #include <boost/config.hpp>
|
---|
11 | #include <boost/python/object.hpp>
|
---|
12 | #include <boost/python/extract.hpp>
|
---|
13 | #include <boost/python/converter/pytype_object_mgr_traits.hpp>
|
---|
14 |
|
---|
15 | #include <boost/iterator/iterator_traits.hpp>
|
---|
16 |
|
---|
17 | #include <iterator>
|
---|
18 | #include <algorithm>
|
---|
19 |
|
---|
20 | namespace boost { namespace python {
|
---|
21 |
|
---|
22 | namespace detail
|
---|
23 | {
|
---|
24 | class BOOST_PYTHON_DECL slice_base : public object
|
---|
25 | {
|
---|
26 | public:
|
---|
27 | // Get the Python objects associated with the slice. In principle, these
|
---|
28 | // may be any arbitrary Python type, but in practice they are usually
|
---|
29 | // integers. If one or more parameter is ommited in the Python expression
|
---|
30 | // that created this slice, than that parameter is None here, and compares
|
---|
31 | // equal to a default-constructed boost::python::object.
|
---|
32 | // If a user-defined type wishes to support slicing, then support for the
|
---|
33 | // special meaning associated with negative indicies is up to the user.
|
---|
34 | object start() const;
|
---|
35 | object stop() const;
|
---|
36 | object step() const;
|
---|
37 |
|
---|
38 | protected:
|
---|
39 | explicit slice_base(PyObject*, PyObject*, PyObject*);
|
---|
40 |
|
---|
41 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
|
---|
42 | };
|
---|
43 | }
|
---|
44 |
|
---|
45 | class slice : public detail::slice_base
|
---|
46 | {
|
---|
47 | typedef detail::slice_base base;
|
---|
48 | public:
|
---|
49 | // Equivalent to slice(::)
|
---|
50 | slice() : base(0,0,0) {}
|
---|
51 |
|
---|
52 | // Each argument must be slice_nil, or implicitly convertable to object.
|
---|
53 | // They should normally be integers.
|
---|
54 | template<typename Integer1, typename Integer2>
|
---|
55 | slice( Integer1 start, Integer2 stop)
|
---|
56 | : base( object(start).ptr(), object(stop).ptr(), 0 )
|
---|
57 | {}
|
---|
58 |
|
---|
59 | template<typename Integer1, typename Integer2, typename Integer3>
|
---|
60 | slice( Integer1 start, Integer2 stop, Integer3 stride)
|
---|
61 | : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
|
---|
62 | {}
|
---|
63 |
|
---|
64 | // The following algorithm is intended to automate the process of
|
---|
65 | // determining a slice range when you want to fully support negative
|
---|
66 | // indicies and non-singular step sizes. Its functionallity is simmilar to
|
---|
67 | // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
|
---|
68 | // This template returns a slice::range struct that, when used in the
|
---|
69 | // following iterative loop, will traverse a slice of the function's
|
---|
70 | // arguments.
|
---|
71 | // while (start != end) {
|
---|
72 | // do_foo(...);
|
---|
73 | // std::advance( start, step);
|
---|
74 | // }
|
---|
75 | // do_foo(...); // repeat exactly once more.
|
---|
76 |
|
---|
77 | // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
|
---|
78 |
|
---|
79 | // Return: slice::range, where start and stop define a _closed_ interval
|
---|
80 | // that covers at most [begin, end-1] of the provided arguments, and a step
|
---|
81 | // that is non-zero.
|
---|
82 |
|
---|
83 | // Throws: error_already_set() if any of the indices are neither None nor
|
---|
84 | // integers, or the slice has a step value of zero.
|
---|
85 | // std::invalid_argument if the resulting range would be empty. Normally,
|
---|
86 | // you should catch this exception and return an empty sequence of the
|
---|
87 | // appropriate type.
|
---|
88 |
|
---|
89 | // Performance: constant time for random-access iterators.
|
---|
90 |
|
---|
91 | // Rationale:
|
---|
92 | // closed-interval: If an open interval were used, then for a non-singular
|
---|
93 | // value for step, the required state for the end iterator could be
|
---|
94 | // beyond the one-past-the-end postion of the specified range. While
|
---|
95 | // probably harmless, the behavior of STL-conforming iterators is
|
---|
96 | // undefined in this case.
|
---|
97 | // exceptions on zero-length range: It is impossible to define a closed
|
---|
98 | // interval over an empty range, so some other form of error checking
|
---|
99 | // would have to be used by the user to prevent undefined behavior. In
|
---|
100 | // the case where the user fails to catch the exception, it will simply
|
---|
101 | // be translated to Python by the default exception handling mechanisms.
|
---|
102 |
|
---|
103 | template<typename RandomAccessIterator>
|
---|
104 | struct range
|
---|
105 | {
|
---|
106 | RandomAccessIterator start;
|
---|
107 | RandomAccessIterator stop;
|
---|
108 | typename iterator_difference<RandomAccessIterator>::type step;
|
---|
109 | };
|
---|
110 |
|
---|
111 | template<typename RandomAccessIterator>
|
---|
112 | slice::range<RandomAccessIterator>
|
---|
113 | get_indicies( const RandomAccessIterator& begin,
|
---|
114 | const RandomAccessIterator& end) const
|
---|
115 | {
|
---|
116 | // This is based loosely on PySlice_GetIndicesEx(), but it has been
|
---|
117 | // carefully crafted to ensure that these iterators never fall out of
|
---|
118 | // the range of the container.
|
---|
119 | slice::range<RandomAccessIterator> ret;
|
---|
120 |
|
---|
121 | typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
|
---|
122 | difference_type max_dist = boost::detail::distance(begin, end);
|
---|
123 |
|
---|
124 | object slice_start = this->start();
|
---|
125 | object slice_stop = this->stop();
|
---|
126 | object slice_step = this->step();
|
---|
127 |
|
---|
128 | // Extract the step.
|
---|
129 | if (slice_step == object()) {
|
---|
130 | ret.step = 1;
|
---|
131 | }
|
---|
132 | else {
|
---|
133 | ret.step = extract<long>( slice_step);
|
---|
134 | if (ret.step == 0) {
|
---|
135 | PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
|
---|
136 | throw_error_already_set();
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | // Setup the start iterator.
|
---|
141 | if (slice_start == object()) {
|
---|
142 | if (ret.step < 0) {
|
---|
143 | ret.start = end;
|
---|
144 | --ret.start;
|
---|
145 | }
|
---|
146 | else
|
---|
147 | ret.start = begin;
|
---|
148 | }
|
---|
149 | else {
|
---|
150 | difference_type i = extract<long>( slice_start);
|
---|
151 | if (i >= max_dist && ret.step > 0)
|
---|
152 | throw std::invalid_argument( "Zero-length slice");
|
---|
153 | if (i >= 0) {
|
---|
154 | ret.start = begin;
|
---|
155 | BOOST_USING_STD_MIN();
|
---|
156 | std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
|
---|
157 | }
|
---|
158 | else {
|
---|
159 | if (i < -max_dist && ret.step < 0)
|
---|
160 | throw std::invalid_argument( "Zero-length slice");
|
---|
161 | ret.start = end;
|
---|
162 | // Advance start (towards begin) not farther than begin.
|
---|
163 | std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | // Set up the stop iterator. This one is a little trickier since slices
|
---|
168 | // define a [) range, and we are returning a [] range.
|
---|
169 | if (slice_stop == object()) {
|
---|
170 | if (ret.step < 0) {
|
---|
171 | ret.stop = begin;
|
---|
172 | }
|
---|
173 | else {
|
---|
174 | ret.stop = end;
|
---|
175 | std::advance( ret.stop, -1);
|
---|
176 | }
|
---|
177 | }
|
---|
178 | else {
|
---|
179 | difference_type i = extract<long>(slice_stop);
|
---|
180 | // First, branch on which direction we are going with this.
|
---|
181 | if (ret.step < 0) {
|
---|
182 | if (i+1 >= max_dist || i == -1)
|
---|
183 | throw std::invalid_argument( "Zero-length slice");
|
---|
184 |
|
---|
185 | if (i >= 0) {
|
---|
186 | ret.stop = begin;
|
---|
187 | std::advance( ret.stop, i+1);
|
---|
188 | }
|
---|
189 | else { // i is negative, but more negative than -1.
|
---|
190 | ret.stop = end;
|
---|
191 | std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
|
---|
192 | }
|
---|
193 | }
|
---|
194 | else { // stepping forward
|
---|
195 | if (i == 0 || -i >= max_dist)
|
---|
196 | throw std::invalid_argument( "Zero-length slice");
|
---|
197 |
|
---|
198 | if (i > 0) {
|
---|
199 | ret.stop = begin;
|
---|
200 | std::advance( ret.stop, (std::min)( i-1, max_dist-1));
|
---|
201 | }
|
---|
202 | else { // i is negative, but not more negative than -max_dist
|
---|
203 | ret.stop = end;
|
---|
204 | std::advance( ret.stop, i-1);
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 |
|
---|
209 | // Now the fun part, handling the possibilites surrounding step.
|
---|
210 | // At this point, step has been initialized, ret.stop, and ret.step
|
---|
211 | // represent the widest possible range that could be traveled
|
---|
212 | // (inclusive), and final_dist is the maximum distance covered by the
|
---|
213 | // slice.
|
---|
214 | typename iterator_difference<RandomAccessIterator>::type final_dist =
|
---|
215 | boost::detail::distance( ret.start, ret.stop);
|
---|
216 |
|
---|
217 | // First case, if both ret.start and ret.stop are equal, then step
|
---|
218 | // is irrelevant and we can return here.
|
---|
219 | if (final_dist == 0)
|
---|
220 | return ret;
|
---|
221 |
|
---|
222 | // Second, if there is a sign mismatch, than the resulting range and
|
---|
223 | // step size conflict: std::advance( ret.start, ret.step) goes away from
|
---|
224 | // ret.stop.
|
---|
225 | if ((final_dist > 0) != (ret.step > 0))
|
---|
226 | throw std::invalid_argument( "Zero-length slice.");
|
---|
227 |
|
---|
228 | // Finally, if the last step puts us past the end, we move ret.stop
|
---|
229 | // towards ret.start in the amount of the remainder.
|
---|
230 | // I don't remember all of the oolies surrounding negative modulii,
|
---|
231 | // so I am handling each of these cases separately.
|
---|
232 | if (final_dist < 0) {
|
---|
233 | difference_type remainder = -final_dist % -ret.step;
|
---|
234 | std::advance( ret.stop, remainder);
|
---|
235 | }
|
---|
236 | else {
|
---|
237 | difference_type remainder = final_dist % ret.step;
|
---|
238 | std::advance( ret.stop, -remainder);
|
---|
239 | }
|
---|
240 |
|
---|
241 | return ret;
|
---|
242 | }
|
---|
243 |
|
---|
244 | public:
|
---|
245 | // This declaration, in conjunction with the specialization of
|
---|
246 | // object_manager_traits<> below, allows C++ functions accepting slice
|
---|
247 | // arguments to be called from from Python. These constructors should never
|
---|
248 | // be used in client code.
|
---|
249 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
|
---|
250 | };
|
---|
251 |
|
---|
252 |
|
---|
253 | namespace converter {
|
---|
254 |
|
---|
255 | template<>
|
---|
256 | struct object_manager_traits<slice>
|
---|
257 | : pytype_object_manager_traits<&PySlice_Type, slice>
|
---|
258 | {
|
---|
259 | };
|
---|
260 |
|
---|
261 | } // !namesapce converter
|
---|
262 |
|
---|
263 | } } // !namespace ::boost::python
|
---|
264 |
|
---|
265 |
|
---|
266 | #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
|
---|