1 | /* boost random/detail/const_mod.hpp header file
|
---|
2 | *
|
---|
3 | * Copyright Jens Maurer 2000-2001
|
---|
4 | * Distributed under the Boost Software License, Version 1.0. (See
|
---|
5 | * accompanying file LICENSE_1_0.txt or copy at
|
---|
6 | * http://www.boost.org/LICENSE_1_0.txt)
|
---|
7 | *
|
---|
8 | * See http://www.boost.org for most recent version including documentation.
|
---|
9 | *
|
---|
10 | * $Id: const_mod.hpp,v 1.8 2004/07/27 03:43:32 dgregor Exp $
|
---|
11 | *
|
---|
12 | * Revision history
|
---|
13 | * 2001-02-18 moved to individual header files
|
---|
14 | */
|
---|
15 |
|
---|
16 | #ifndef BOOST_RANDOM_CONST_MOD_HPP
|
---|
17 | #define BOOST_RANDOM_CONST_MOD_HPP
|
---|
18 |
|
---|
19 | #include <cassert>
|
---|
20 | #include <boost/static_assert.hpp>
|
---|
21 | #include <boost/cstdint.hpp>
|
---|
22 | #include <boost/integer_traits.hpp>
|
---|
23 | #include <boost/detail/workaround.hpp>
|
---|
24 |
|
---|
25 | namespace boost {
|
---|
26 | namespace random {
|
---|
27 |
|
---|
28 | /*
|
---|
29 | * Some random number generators require modular arithmetic. Put
|
---|
30 | * everything we need here.
|
---|
31 | * IntType must be an integral type.
|
---|
32 | */
|
---|
33 |
|
---|
34 | namespace detail {
|
---|
35 |
|
---|
36 | template<bool is_signed>
|
---|
37 | struct do_add
|
---|
38 | { };
|
---|
39 |
|
---|
40 | template<>
|
---|
41 | struct do_add<true>
|
---|
42 | {
|
---|
43 | template<class IntType>
|
---|
44 | static IntType add(IntType m, IntType x, IntType c)
|
---|
45 | {
|
---|
46 | x += (c-m);
|
---|
47 | if(x < 0)
|
---|
48 | x += m;
|
---|
49 | return x;
|
---|
50 | }
|
---|
51 | };
|
---|
52 |
|
---|
53 | template<>
|
---|
54 | struct do_add<false>
|
---|
55 | {
|
---|
56 | template<class IntType>
|
---|
57 | static IntType add(IntType, IntType, IntType)
|
---|
58 | {
|
---|
59 | // difficult
|
---|
60 | assert(!"const_mod::add with c too large");
|
---|
61 | return 0;
|
---|
62 | }
|
---|
63 | };
|
---|
64 | } // namespace detail
|
---|
65 |
|
---|
66 | #if !(defined(__BORLANDC__) && (__BORLANDC__ == 0x560))
|
---|
67 |
|
---|
68 | template<class IntType, IntType m>
|
---|
69 | class const_mod
|
---|
70 | {
|
---|
71 | public:
|
---|
72 | static IntType add(IntType x, IntType c)
|
---|
73 | {
|
---|
74 | if(c == 0)
|
---|
75 | return x;
|
---|
76 | else if(c <= traits::const_max - m) // i.e. m+c < max
|
---|
77 | return add_small(x, c);
|
---|
78 | else
|
---|
79 | return detail::do_add<traits::is_signed>::add(m, x, c);
|
---|
80 | }
|
---|
81 |
|
---|
82 | static IntType mult(IntType a, IntType x)
|
---|
83 | {
|
---|
84 | if(a == 1)
|
---|
85 | return x;
|
---|
86 | else if(m <= traits::const_max/a) // i.e. a*m <= max
|
---|
87 | return mult_small(a, x);
|
---|
88 | else if(traits::is_signed && (m%a < m/a))
|
---|
89 | return mult_schrage(a, x);
|
---|
90 | else {
|
---|
91 | // difficult
|
---|
92 | assert(!"const_mod::mult with a too large");
|
---|
93 | return 0;
|
---|
94 | }
|
---|
95 | }
|
---|
96 |
|
---|
97 | static IntType mult_add(IntType a, IntType x, IntType c)
|
---|
98 | {
|
---|
99 | if(m <= (traits::const_max-c)/a) // i.e. a*m+c <= max
|
---|
100 | return (a*x+c) % m;
|
---|
101 | else
|
---|
102 | return add(mult(a, x), c);
|
---|
103 | }
|
---|
104 |
|
---|
105 | static IntType invert(IntType x)
|
---|
106 | { return x == 0 ? 0 : invert_euclidian(x); }
|
---|
107 |
|
---|
108 | private:
|
---|
109 | typedef integer_traits<IntType> traits;
|
---|
110 |
|
---|
111 | const_mod(); // don't instantiate
|
---|
112 |
|
---|
113 | static IntType add_small(IntType x, IntType c)
|
---|
114 | {
|
---|
115 | x += c;
|
---|
116 | if(x >= m)
|
---|
117 | x -= m;
|
---|
118 | return x;
|
---|
119 | }
|
---|
120 |
|
---|
121 | static IntType mult_small(IntType a, IntType x)
|
---|
122 | {
|
---|
123 | return a*x % m;
|
---|
124 | }
|
---|
125 |
|
---|
126 | static IntType mult_schrage(IntType a, IntType value)
|
---|
127 | {
|
---|
128 | const IntType q = m / a;
|
---|
129 | const IntType r = m % a;
|
---|
130 |
|
---|
131 | assert(r < q); // check that overflow cannot happen
|
---|
132 |
|
---|
133 | value = a*(value%q) - r*(value/q);
|
---|
134 | // An optimizer bug in the SGI MIPSpro 7.3.1.x compiler requires this
|
---|
135 | // convoluted formulation of the loop (Synge Todo)
|
---|
136 | for(;;) {
|
---|
137 | if (value > 0)
|
---|
138 | break;
|
---|
139 | value += m;
|
---|
140 | }
|
---|
141 | return value;
|
---|
142 | }
|
---|
143 |
|
---|
144 | // invert c in the finite field (mod m) (m must be prime)
|
---|
145 | static IntType invert_euclidian(IntType c)
|
---|
146 | {
|
---|
147 | // we are interested in the gcd factor for c, because this is our inverse
|
---|
148 | BOOST_STATIC_ASSERT(m > 0);
|
---|
149 | #if BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3003))
|
---|
150 | assert(boost::integer_traits<IntType>::is_signed);
|
---|
151 | #elif !defined(BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS)
|
---|
152 | BOOST_STATIC_ASSERT(boost::integer_traits<IntType>::is_signed);
|
---|
153 | #endif
|
---|
154 | assert(c > 0);
|
---|
155 | IntType l1 = 0;
|
---|
156 | IntType l2 = 1;
|
---|
157 | IntType n = c;
|
---|
158 | IntType p = m;
|
---|
159 | for(;;) {
|
---|
160 | IntType q = p / n;
|
---|
161 | l1 -= q * l2; // this requires a signed IntType!
|
---|
162 | p -= q * n;
|
---|
163 | if(p == 0)
|
---|
164 | return (l2 < 1 ? l2 + m : l2);
|
---|
165 | IntType q2 = n / p;
|
---|
166 | l2 -= q2 * l1;
|
---|
167 | n -= q2 * p;
|
---|
168 | if(n == 0)
|
---|
169 | return (l1 < 1 ? l1 + m : l1);
|
---|
170 | }
|
---|
171 | }
|
---|
172 | };
|
---|
173 |
|
---|
174 | // The modulus is exactly the word size: rely on machine overflow handling.
|
---|
175 | // Due to a GCC bug, we cannot partially specialize in the presence of
|
---|
176 | // template value parameters.
|
---|
177 | template<>
|
---|
178 | class const_mod<unsigned int, 0>
|
---|
179 | {
|
---|
180 | typedef unsigned int IntType;
|
---|
181 | public:
|
---|
182 | static IntType add(IntType x, IntType c) { return x+c; }
|
---|
183 | static IntType mult(IntType a, IntType x) { return a*x; }
|
---|
184 | static IntType mult_add(IntType a, IntType x, IntType c) { return a*x+c; }
|
---|
185 |
|
---|
186 | // m is not prime, thus invert is not useful
|
---|
187 | private: // don't instantiate
|
---|
188 | const_mod();
|
---|
189 | };
|
---|
190 |
|
---|
191 | template<>
|
---|
192 | class const_mod<unsigned long, 0>
|
---|
193 | {
|
---|
194 | typedef unsigned long IntType;
|
---|
195 | public:
|
---|
196 | static IntType add(IntType x, IntType c) { return x+c; }
|
---|
197 | static IntType mult(IntType a, IntType x) { return a*x; }
|
---|
198 | static IntType mult_add(IntType a, IntType x, IntType c) { return a*x+c; }
|
---|
199 |
|
---|
200 | // m is not prime, thus invert is not useful
|
---|
201 | private: // don't instantiate
|
---|
202 | const_mod();
|
---|
203 | };
|
---|
204 |
|
---|
205 | // the modulus is some power of 2: rely partly on machine overflow handling
|
---|
206 | // we only specialize for rand48 at the moment
|
---|
207 | #ifndef BOOST_NO_INT64_T
|
---|
208 | template<>
|
---|
209 | class const_mod<uint64_t, uint64_t(1) << 48>
|
---|
210 | {
|
---|
211 | typedef uint64_t IntType;
|
---|
212 | public:
|
---|
213 | static IntType add(IntType x, IntType c) { return c == 0 ? x : mod(x+c); }
|
---|
214 | static IntType mult(IntType a, IntType x) { return mod(a*x); }
|
---|
215 | static IntType mult_add(IntType a, IntType x, IntType c)
|
---|
216 | { return mod(a*x+c); }
|
---|
217 | static IntType mod(IntType x) { return x &= ((uint64_t(1) << 48)-1); }
|
---|
218 |
|
---|
219 | // m is not prime, thus invert is not useful
|
---|
220 | private: // don't instantiate
|
---|
221 | const_mod();
|
---|
222 | };
|
---|
223 | #endif /* !BOOST_NO_INT64_T */
|
---|
224 |
|
---|
225 | #else
|
---|
226 |
|
---|
227 | //
|
---|
228 | // for some reason Borland C++ Builder 6 has problems with
|
---|
229 | // the full specialisations of const_mod, define a generic version
|
---|
230 | // instead, the compiler will optimise away the const-if statements:
|
---|
231 | //
|
---|
232 |
|
---|
233 | template<class IntType, IntType m>
|
---|
234 | class const_mod
|
---|
235 | {
|
---|
236 | public:
|
---|
237 | static IntType add(IntType x, IntType c)
|
---|
238 | {
|
---|
239 | if(0 == m)
|
---|
240 | {
|
---|
241 | return x+c;
|
---|
242 | }
|
---|
243 | else
|
---|
244 | {
|
---|
245 | if(c == 0)
|
---|
246 | return x;
|
---|
247 | else if(c <= traits::const_max - m) // i.e. m+c < max
|
---|
248 | return add_small(x, c);
|
---|
249 | else
|
---|
250 | return detail::do_add<traits::is_signed>::add(m, x, c);
|
---|
251 | }
|
---|
252 | }
|
---|
253 |
|
---|
254 | static IntType mult(IntType a, IntType x)
|
---|
255 | {
|
---|
256 | if(x == 0)
|
---|
257 | {
|
---|
258 | return a*x;
|
---|
259 | }
|
---|
260 | else
|
---|
261 | {
|
---|
262 | if(a == 1)
|
---|
263 | return x;
|
---|
264 | else if(m <= traits::const_max/a) // i.e. a*m <= max
|
---|
265 | return mult_small(a, x);
|
---|
266 | else if(traits::is_signed && (m%a < m/a))
|
---|
267 | return mult_schrage(a, x);
|
---|
268 | else {
|
---|
269 | // difficult
|
---|
270 | assert(!"const_mod::mult with a too large");
|
---|
271 | return 0;
|
---|
272 | }
|
---|
273 | }
|
---|
274 | }
|
---|
275 |
|
---|
276 | static IntType mult_add(IntType a, IntType x, IntType c)
|
---|
277 | {
|
---|
278 | if(m == 0)
|
---|
279 | {
|
---|
280 | return a*x+c;
|
---|
281 | }
|
---|
282 | else
|
---|
283 | {
|
---|
284 | if(m <= (traits::const_max-c)/a) // i.e. a*m+c <= max
|
---|
285 | return (a*x+c) % m;
|
---|
286 | else
|
---|
287 | return add(mult(a, x), c);
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 | static IntType invert(IntType x)
|
---|
292 | { return x == 0 ? 0 : invert_euclidian(x); }
|
---|
293 |
|
---|
294 | private:
|
---|
295 | typedef integer_traits<IntType> traits;
|
---|
296 |
|
---|
297 | const_mod(); // don't instantiate
|
---|
298 |
|
---|
299 | static IntType add_small(IntType x, IntType c)
|
---|
300 | {
|
---|
301 | x += c;
|
---|
302 | if(x >= m)
|
---|
303 | x -= m;
|
---|
304 | return x;
|
---|
305 | }
|
---|
306 |
|
---|
307 | static IntType mult_small(IntType a, IntType x)
|
---|
308 | {
|
---|
309 | return a*x % m;
|
---|
310 | }
|
---|
311 |
|
---|
312 | static IntType mult_schrage(IntType a, IntType value)
|
---|
313 | {
|
---|
314 | const IntType q = m / a;
|
---|
315 | const IntType r = m % a;
|
---|
316 |
|
---|
317 | assert(r < q); // check that overflow cannot happen
|
---|
318 |
|
---|
319 | value = a*(value%q) - r*(value/q);
|
---|
320 | while(value <= 0)
|
---|
321 | value += m;
|
---|
322 | return value;
|
---|
323 | }
|
---|
324 |
|
---|
325 | // invert c in the finite field (mod m) (m must be prime)
|
---|
326 | static IntType invert_euclidian(IntType c)
|
---|
327 | {
|
---|
328 | // we are interested in the gcd factor for c, because this is our inverse
|
---|
329 | BOOST_STATIC_ASSERT(m > 0);
|
---|
330 | #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
|
---|
331 | BOOST_STATIC_ASSERT(boost::integer_traits<IntType>::is_signed);
|
---|
332 | #endif
|
---|
333 | assert(c > 0);
|
---|
334 | IntType l1 = 0;
|
---|
335 | IntType l2 = 1;
|
---|
336 | IntType n = c;
|
---|
337 | IntType p = m;
|
---|
338 | for(;;) {
|
---|
339 | IntType q = p / n;
|
---|
340 | l1 -= q * l2; // this requires a signed IntType!
|
---|
341 | p -= q * n;
|
---|
342 | if(p == 0)
|
---|
343 | return (l2 < 1 ? l2 + m : l2);
|
---|
344 | IntType q2 = n / p;
|
---|
345 | l2 -= q2 * l1;
|
---|
346 | n -= q2 * p;
|
---|
347 | if(n == 0)
|
---|
348 | return (l1 < 1 ? l1 + m : l1);
|
---|
349 | }
|
---|
350 | }
|
---|
351 | };
|
---|
352 |
|
---|
353 |
|
---|
354 | #endif
|
---|
355 |
|
---|
356 | } // namespace random
|
---|
357 | } // namespace boost
|
---|
358 |
|
---|
359 | #endif // BOOST_RANDOM_CONST_MOD_HPP
|
---|