1 | // Boost rational.hpp header file ------------------------------------------//
|
---|
2 |
|
---|
3 | // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
|
---|
4 | // distribute this software is granted provided this copyright notice appears
|
---|
5 | // in all copies. This software is provided "as is" without express or
|
---|
6 | // implied warranty, and with no claim as to its suitability for any purpose.
|
---|
7 |
|
---|
8 | // See http://www.boost.org/libs/rational for documentation.
|
---|
9 |
|
---|
10 | // Credits:
|
---|
11 | // Thanks to the boost mailing list in general for useful comments.
|
---|
12 | // Particular contributions included:
|
---|
13 | // Andrew D Jewell, for reminding me to take care to avoid overflow
|
---|
14 | // Ed Brey, for many comments, including picking up on some dreadful typos
|
---|
15 | // Stephen Silver contributed the test suite and comments on user-defined
|
---|
16 | // IntType
|
---|
17 | // Nickolay Mladenov, for the implementation of operator+=
|
---|
18 |
|
---|
19 | // Revision History
|
---|
20 | // 28 Sep 02 Use _left versions of operators from operators.hpp
|
---|
21 | // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
|
---|
22 | // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
|
---|
23 | // 05 Feb 01 Update operator>> to tighten up input syntax
|
---|
24 | // 05 Feb 01 Final tidy up of gcd code prior to the new release
|
---|
25 | // 27 Jan 01 Recode abs() without relying on abs(IntType)
|
---|
26 | // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
|
---|
27 | // tidy up a number of areas, use newer features of operators.hpp
|
---|
28 | // (reduces space overhead to zero), add operator!,
|
---|
29 | // introduce explicit mixed-mode arithmetic operations
|
---|
30 | // 12 Jan 01 Include fixes to handle a user-defined IntType better
|
---|
31 | // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
|
---|
32 | // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
|
---|
33 | // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
|
---|
34 | // affected (Beman Dawes)
|
---|
35 | // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
|
---|
36 | // 14 Dec 99 Modifications based on comments from the boost list
|
---|
37 | // 09 Dec 99 Initial Version (Paul Moore)
|
---|
38 |
|
---|
39 | #ifndef BOOST_RATIONAL_HPP
|
---|
40 | #define BOOST_RATIONAL_HPP
|
---|
41 |
|
---|
42 | #include <iostream> // for std::istream and std::ostream
|
---|
43 | #include <iomanip> // for std::noskipws
|
---|
44 | #include <stdexcept> // for std::domain_error
|
---|
45 | #include <string> // for std::string implicit constructor
|
---|
46 | #include <boost/operators.hpp> // for boost::addable etc
|
---|
47 | #include <cstdlib> // for std::abs
|
---|
48 | #include <boost/call_traits.hpp> // for boost::call_traits
|
---|
49 | #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
|
---|
50 |
|
---|
51 | namespace boost {
|
---|
52 |
|
---|
53 | // Note: We use n and m as temporaries in this function, so there is no value
|
---|
54 | // in using const IntType& as we would only need to make a copy anyway...
|
---|
55 | template <typename IntType>
|
---|
56 | IntType gcd(IntType n, IntType m)
|
---|
57 | {
|
---|
58 | // Avoid repeated construction
|
---|
59 | IntType zero(0);
|
---|
60 |
|
---|
61 | // This is abs() - given the existence of broken compilers with Koenig
|
---|
62 | // lookup issues and other problems, I code this explicitly. (Remember,
|
---|
63 | // IntType may be a user-defined type).
|
---|
64 | if (n < zero)
|
---|
65 | n = -n;
|
---|
66 | if (m < zero)
|
---|
67 | m = -m;
|
---|
68 |
|
---|
69 | // As n and m are now positive, we can be sure that %= returns a
|
---|
70 | // positive value (the standard guarantees this for built-in types,
|
---|
71 | // and we require it of user-defined types).
|
---|
72 | for(;;) {
|
---|
73 | if(m == zero)
|
---|
74 | return n;
|
---|
75 | n %= m;
|
---|
76 | if(n == zero)
|
---|
77 | return m;
|
---|
78 | m %= n;
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | template <typename IntType>
|
---|
83 | IntType lcm(IntType n, IntType m)
|
---|
84 | {
|
---|
85 | // Avoid repeated construction
|
---|
86 | IntType zero(0);
|
---|
87 |
|
---|
88 | if (n == zero || m == zero)
|
---|
89 | return zero;
|
---|
90 |
|
---|
91 | n /= gcd(n, m);
|
---|
92 | n *= m;
|
---|
93 |
|
---|
94 | if (n < zero)
|
---|
95 | n = -n;
|
---|
96 | return n;
|
---|
97 | }
|
---|
98 |
|
---|
99 | class bad_rational : public std::domain_error
|
---|
100 | {
|
---|
101 | public:
|
---|
102 | explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
|
---|
103 | };
|
---|
104 |
|
---|
105 | template <typename IntType>
|
---|
106 | class rational;
|
---|
107 |
|
---|
108 | template <typename IntType>
|
---|
109 | rational<IntType> abs(const rational<IntType>& r);
|
---|
110 |
|
---|
111 | template <typename IntType>
|
---|
112 | class rational :
|
---|
113 | less_than_comparable < rational<IntType>,
|
---|
114 | equality_comparable < rational<IntType>,
|
---|
115 | less_than_comparable2 < rational<IntType>, IntType,
|
---|
116 | equality_comparable2 < rational<IntType>, IntType,
|
---|
117 | addable < rational<IntType>,
|
---|
118 | subtractable < rational<IntType>,
|
---|
119 | multipliable < rational<IntType>,
|
---|
120 | dividable < rational<IntType>,
|
---|
121 | addable2 < rational<IntType>, IntType,
|
---|
122 | subtractable2 < rational<IntType>, IntType,
|
---|
123 | subtractable2_left < rational<IntType>, IntType,
|
---|
124 | multipliable2 < rational<IntType>, IntType,
|
---|
125 | dividable2 < rational<IntType>, IntType,
|
---|
126 | dividable2_left < rational<IntType>, IntType,
|
---|
127 | incrementable < rational<IntType>,
|
---|
128 | decrementable < rational<IntType>
|
---|
129 | > > > > > > > > > > > > > > > >
|
---|
130 | {
|
---|
131 | typedef typename boost::call_traits<IntType>::param_type param_type;
|
---|
132 | public:
|
---|
133 | typedef IntType int_type;
|
---|
134 | rational() : num(0), den(1) {}
|
---|
135 | rational(param_type n) : num(n), den(1) {}
|
---|
136 | rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
|
---|
137 |
|
---|
138 | // Default copy constructor and assignment are fine
|
---|
139 |
|
---|
140 | // Add assignment from IntType
|
---|
141 | rational& operator=(param_type n) { return assign(n, 1); }
|
---|
142 |
|
---|
143 | // Assign in place
|
---|
144 | rational& assign(param_type n, param_type d);
|
---|
145 |
|
---|
146 | // Access to representation
|
---|
147 | IntType numerator() const { return num; }
|
---|
148 | IntType denominator() const { return den; }
|
---|
149 |
|
---|
150 | // Arithmetic assignment operators
|
---|
151 | rational& operator+= (const rational& r);
|
---|
152 | rational& operator-= (const rational& r);
|
---|
153 | rational& operator*= (const rational& r);
|
---|
154 | rational& operator/= (const rational& r);
|
---|
155 |
|
---|
156 | rational& operator+= (param_type i);
|
---|
157 | rational& operator-= (param_type i);
|
---|
158 | rational& operator*= (param_type i);
|
---|
159 | rational& operator/= (param_type i);
|
---|
160 |
|
---|
161 | // Increment and decrement
|
---|
162 | const rational& operator++();
|
---|
163 | const rational& operator--();
|
---|
164 |
|
---|
165 | // Operator not
|
---|
166 | bool operator!() const { return !num; }
|
---|
167 |
|
---|
168 | // Comparison operators
|
---|
169 | bool operator< (const rational& r) const;
|
---|
170 | bool operator== (const rational& r) const;
|
---|
171 |
|
---|
172 | bool operator< (param_type i) const;
|
---|
173 | bool operator> (param_type i) const;
|
---|
174 | bool operator== (param_type i) const;
|
---|
175 |
|
---|
176 | private:
|
---|
177 | // Implementation - numerator and denominator (normalized).
|
---|
178 | // Other possibilities - separate whole-part, or sign, fields?
|
---|
179 | IntType num;
|
---|
180 | IntType den;
|
---|
181 |
|
---|
182 | // Representation note: Fractions are kept in normalized form at all
|
---|
183 | // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
|
---|
184 | // In particular, note that the implementation of abs() below relies
|
---|
185 | // on den always being positive.
|
---|
186 | void normalize();
|
---|
187 | };
|
---|
188 |
|
---|
189 | // Assign in place
|
---|
190 | template <typename IntType>
|
---|
191 | inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
|
---|
192 | {
|
---|
193 | num = n;
|
---|
194 | den = d;
|
---|
195 | normalize();
|
---|
196 | return *this;
|
---|
197 | }
|
---|
198 |
|
---|
199 | // Unary plus and minus
|
---|
200 | template <typename IntType>
|
---|
201 | inline rational<IntType> operator+ (const rational<IntType>& r)
|
---|
202 | {
|
---|
203 | return r;
|
---|
204 | }
|
---|
205 |
|
---|
206 | template <typename IntType>
|
---|
207 | inline rational<IntType> operator- (const rational<IntType>& r)
|
---|
208 | {
|
---|
209 | return rational<IntType>(-r.numerator(), r.denominator());
|
---|
210 | }
|
---|
211 |
|
---|
212 | // Arithmetic assignment operators
|
---|
213 | template <typename IntType>
|
---|
214 | rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
|
---|
215 | {
|
---|
216 | // This calculation avoids overflow, and minimises the number of expensive
|
---|
217 | // calculations. Thanks to Nickolay Mladenov for this algorithm.
|
---|
218 | //
|
---|
219 | // Proof:
|
---|
220 | // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
|
---|
221 | // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
|
---|
222 | //
|
---|
223 | // The result is (a*d1 + c*b1) / (b1*d1*g).
|
---|
224 | // Now we have to normalize this ratio.
|
---|
225 | // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
|
---|
226 | // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
|
---|
227 | // But since gcd(a,b1)=1 we have h=1.
|
---|
228 | // Similarly h|d1 leads to h=1.
|
---|
229 | // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
|
---|
230 | // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
|
---|
231 | // Which proves that instead of normalizing the result, it is better to
|
---|
232 | // divide num and den by gcd((a*d1 + c*b1), g)
|
---|
233 |
|
---|
234 | // Protect against self-modification
|
---|
235 | IntType r_num = r.num;
|
---|
236 | IntType r_den = r.den;
|
---|
237 |
|
---|
238 | IntType g = gcd(den, r_den);
|
---|
239 | den /= g; // = b1 from the calculations above
|
---|
240 | num = num * (r_den / g) + r_num * den;
|
---|
241 | g = gcd(num, g);
|
---|
242 | num /= g;
|
---|
243 | den *= r_den/g;
|
---|
244 |
|
---|
245 | return *this;
|
---|
246 | }
|
---|
247 |
|
---|
248 | template <typename IntType>
|
---|
249 | rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
|
---|
250 | {
|
---|
251 | // Protect against self-modification
|
---|
252 | IntType r_num = r.num;
|
---|
253 | IntType r_den = r.den;
|
---|
254 |
|
---|
255 | // This calculation avoids overflow, and minimises the number of expensive
|
---|
256 | // calculations. It corresponds exactly to the += case above
|
---|
257 | IntType g = gcd(den, r_den);
|
---|
258 | den /= g;
|
---|
259 | num = num * (r_den / g) - r_num * den;
|
---|
260 | g = gcd(num, g);
|
---|
261 | num /= g;
|
---|
262 | den *= r_den/g;
|
---|
263 |
|
---|
264 | return *this;
|
---|
265 | }
|
---|
266 |
|
---|
267 | template <typename IntType>
|
---|
268 | rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
|
---|
269 | {
|
---|
270 | // Protect against self-modification
|
---|
271 | IntType r_num = r.num;
|
---|
272 | IntType r_den = r.den;
|
---|
273 |
|
---|
274 | // Avoid overflow and preserve normalization
|
---|
275 | IntType gcd1 = gcd<IntType>(num, r_den);
|
---|
276 | IntType gcd2 = gcd<IntType>(r_num, den);
|
---|
277 | num = (num/gcd1) * (r_num/gcd2);
|
---|
278 | den = (den/gcd2) * (r_den/gcd1);
|
---|
279 | return *this;
|
---|
280 | }
|
---|
281 |
|
---|
282 | template <typename IntType>
|
---|
283 | rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
|
---|
284 | {
|
---|
285 | // Protect against self-modification
|
---|
286 | IntType r_num = r.num;
|
---|
287 | IntType r_den = r.den;
|
---|
288 |
|
---|
289 | // Avoid repeated construction
|
---|
290 | IntType zero(0);
|
---|
291 |
|
---|
292 | // Trap division by zero
|
---|
293 | if (r_num == zero)
|
---|
294 | throw bad_rational();
|
---|
295 | if (num == zero)
|
---|
296 | return *this;
|
---|
297 |
|
---|
298 | // Avoid overflow and preserve normalization
|
---|
299 | IntType gcd1 = gcd<IntType>(num, r_num);
|
---|
300 | IntType gcd2 = gcd<IntType>(r_den, den);
|
---|
301 | num = (num/gcd1) * (r_den/gcd2);
|
---|
302 | den = (den/gcd2) * (r_num/gcd1);
|
---|
303 |
|
---|
304 | if (den < zero) {
|
---|
305 | num = -num;
|
---|
306 | den = -den;
|
---|
307 | }
|
---|
308 | return *this;
|
---|
309 | }
|
---|
310 |
|
---|
311 | // Mixed-mode operators
|
---|
312 | template <typename IntType>
|
---|
313 | inline rational<IntType>&
|
---|
314 | rational<IntType>::operator+= (param_type i)
|
---|
315 | {
|
---|
316 | return operator+= (rational<IntType>(i));
|
---|
317 | }
|
---|
318 |
|
---|
319 | template <typename IntType>
|
---|
320 | inline rational<IntType>&
|
---|
321 | rational<IntType>::operator-= (param_type i)
|
---|
322 | {
|
---|
323 | return operator-= (rational<IntType>(i));
|
---|
324 | }
|
---|
325 |
|
---|
326 | template <typename IntType>
|
---|
327 | inline rational<IntType>&
|
---|
328 | rational<IntType>::operator*= (param_type i)
|
---|
329 | {
|
---|
330 | return operator*= (rational<IntType>(i));
|
---|
331 | }
|
---|
332 |
|
---|
333 | template <typename IntType>
|
---|
334 | inline rational<IntType>&
|
---|
335 | rational<IntType>::operator/= (param_type i)
|
---|
336 | {
|
---|
337 | return operator/= (rational<IntType>(i));
|
---|
338 | }
|
---|
339 |
|
---|
340 | // Increment and decrement
|
---|
341 | template <typename IntType>
|
---|
342 | inline const rational<IntType>& rational<IntType>::operator++()
|
---|
343 | {
|
---|
344 | // This can never denormalise the fraction
|
---|
345 | num += den;
|
---|
346 | return *this;
|
---|
347 | }
|
---|
348 |
|
---|
349 | template <typename IntType>
|
---|
350 | inline const rational<IntType>& rational<IntType>::operator--()
|
---|
351 | {
|
---|
352 | // This can never denormalise the fraction
|
---|
353 | num -= den;
|
---|
354 | return *this;
|
---|
355 | }
|
---|
356 |
|
---|
357 | // Comparison operators
|
---|
358 | template <typename IntType>
|
---|
359 | bool rational<IntType>::operator< (const rational<IntType>& r) const
|
---|
360 | {
|
---|
361 | // Avoid repeated construction
|
---|
362 | IntType zero(0);
|
---|
363 |
|
---|
364 | // If the two values have different signs, we don't need to do the
|
---|
365 | // expensive calculations below. We take advantage here of the fact
|
---|
366 | // that the denominator is always positive.
|
---|
367 | if (num < zero && r.num >= zero) // -ve < +ve
|
---|
368 | return true;
|
---|
369 | if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
|
---|
370 | return false;
|
---|
371 |
|
---|
372 | // Avoid overflow
|
---|
373 | IntType gcd1 = gcd<IntType>(num, r.num);
|
---|
374 | IntType gcd2 = gcd<IntType>(r.den, den);
|
---|
375 | return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
|
---|
376 | }
|
---|
377 |
|
---|
378 | template <typename IntType>
|
---|
379 | bool rational<IntType>::operator< (param_type i) const
|
---|
380 | {
|
---|
381 | // Avoid repeated construction
|
---|
382 | IntType zero(0);
|
---|
383 |
|
---|
384 | // If the two values have different signs, we don't need to do the
|
---|
385 | // expensive calculations below. We take advantage here of the fact
|
---|
386 | // that the denominator is always positive.
|
---|
387 | if (num < zero && i >= zero) // -ve < +ve
|
---|
388 | return true;
|
---|
389 | if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
|
---|
390 | return false;
|
---|
391 |
|
---|
392 | // Now, use the fact that n/d truncates towards zero as long as n and d
|
---|
393 | // are both positive.
|
---|
394 | // Divide instead of multiplying to avoid overflow issues. Of course,
|
---|
395 | // division may be slower, but accuracy is more important than speed...
|
---|
396 | if (num > zero)
|
---|
397 | return (num/den) < i;
|
---|
398 | else
|
---|
399 | return -i < (-num/den);
|
---|
400 | }
|
---|
401 |
|
---|
402 | template <typename IntType>
|
---|
403 | bool rational<IntType>::operator> (param_type i) const
|
---|
404 | {
|
---|
405 | // Trap equality first
|
---|
406 | if (num == i && den == IntType(1))
|
---|
407 | return false;
|
---|
408 |
|
---|
409 | // Otherwise, we can use operator<
|
---|
410 | return !operator<(i);
|
---|
411 | }
|
---|
412 |
|
---|
413 | template <typename IntType>
|
---|
414 | inline bool rational<IntType>::operator== (const rational<IntType>& r) const
|
---|
415 | {
|
---|
416 | return ((num == r.num) && (den == r.den));
|
---|
417 | }
|
---|
418 |
|
---|
419 | template <typename IntType>
|
---|
420 | inline bool rational<IntType>::operator== (param_type i) const
|
---|
421 | {
|
---|
422 | return ((den == IntType(1)) && (num == i));
|
---|
423 | }
|
---|
424 |
|
---|
425 | // Normalisation
|
---|
426 | template <typename IntType>
|
---|
427 | void rational<IntType>::normalize()
|
---|
428 | {
|
---|
429 | // Avoid repeated construction
|
---|
430 | IntType zero(0);
|
---|
431 |
|
---|
432 | if (den == zero)
|
---|
433 | throw bad_rational();
|
---|
434 |
|
---|
435 | // Handle the case of zero separately, to avoid division by zero
|
---|
436 | if (num == zero) {
|
---|
437 | den = IntType(1);
|
---|
438 | return;
|
---|
439 | }
|
---|
440 |
|
---|
441 | IntType g = gcd<IntType>(num, den);
|
---|
442 |
|
---|
443 | num /= g;
|
---|
444 | den /= g;
|
---|
445 |
|
---|
446 | // Ensure that the denominator is positive
|
---|
447 | if (den < zero) {
|
---|
448 | num = -num;
|
---|
449 | den = -den;
|
---|
450 | }
|
---|
451 | }
|
---|
452 |
|
---|
453 | namespace detail {
|
---|
454 |
|
---|
455 | // A utility class to reset the format flags for an istream at end
|
---|
456 | // of scope, even in case of exceptions
|
---|
457 | struct resetter {
|
---|
458 | resetter(std::istream& is) : is_(is), f_(is.flags()) {}
|
---|
459 | ~resetter() { is_.flags(f_); }
|
---|
460 | std::istream& is_;
|
---|
461 | std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
|
---|
462 | };
|
---|
463 |
|
---|
464 | }
|
---|
465 |
|
---|
466 | // Input and output
|
---|
467 | template <typename IntType>
|
---|
468 | std::istream& operator>> (std::istream& is, rational<IntType>& r)
|
---|
469 | {
|
---|
470 | IntType n = IntType(0), d = IntType(1);
|
---|
471 | char c = 0;
|
---|
472 | detail::resetter sentry(is);
|
---|
473 |
|
---|
474 | is >> n;
|
---|
475 | c = is.get();
|
---|
476 |
|
---|
477 | if (c != '/')
|
---|
478 | is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base
|
---|
479 |
|
---|
480 | #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
|
---|
481 | is >> std::noskipws;
|
---|
482 | #else
|
---|
483 | is.unsetf(ios::skipws); // compiles, but seems to have no effect.
|
---|
484 | #endif
|
---|
485 | is >> d;
|
---|
486 |
|
---|
487 | if (is)
|
---|
488 | r.assign(n, d);
|
---|
489 |
|
---|
490 | return is;
|
---|
491 | }
|
---|
492 |
|
---|
493 | // Add manipulators for output format?
|
---|
494 | template <typename IntType>
|
---|
495 | std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
|
---|
496 | {
|
---|
497 | os << r.numerator() << '/' << r.denominator();
|
---|
498 | return os;
|
---|
499 | }
|
---|
500 |
|
---|
501 | // Type conversion
|
---|
502 | template <typename T, typename IntType>
|
---|
503 | inline T rational_cast(const rational<IntType>& src)
|
---|
504 | {
|
---|
505 | return static_cast<T>(src.numerator())/src.denominator();
|
---|
506 | }
|
---|
507 |
|
---|
508 | // Do not use any abs() defined on IntType - it isn't worth it, given the
|
---|
509 | // difficulties involved (Koenig lookup required, there may not *be* an abs()
|
---|
510 | // defined, etc etc).
|
---|
511 | template <typename IntType>
|
---|
512 | inline rational<IntType> abs(const rational<IntType>& r)
|
---|
513 | {
|
---|
514 | if (r.numerator() >= IntType(0))
|
---|
515 | return r;
|
---|
516 |
|
---|
517 | return rational<IntType>(-r.numerator(), r.denominator());
|
---|
518 | }
|
---|
519 |
|
---|
520 | } // namespace boost
|
---|
521 |
|
---|
522 | #endif // BOOST_RATIONAL_HPP
|
---|
523 |
|
---|