1 | // Inline classes to provide a "toy" interface for threads and mutexes. |
---|
2 | // These are used by the fltk demo programs. They have been improved |
---|
3 | // quite a bit and may be useful for non-toy programs, too. |
---|
4 | |
---|
5 | #ifndef fltk_Threads_h |
---|
6 | #define fltk_Threads_h |
---|
7 | |
---|
8 | #ifndef _WIN32 |
---|
9 | // pthreads: |
---|
10 | |
---|
11 | #include <pthread.h> |
---|
12 | |
---|
13 | namespace fltk { |
---|
14 | /*! \addtogroup multithreading |
---|
15 | \{ */ |
---|
16 | |
---|
17 | /** Hides whatever the system uses to identify a thread. Used so |
---|
18 | the "toy" interface is portable. */ |
---|
19 | typedef pthread_t Thread; |
---|
20 | |
---|
21 | /** Fork a new thread and make it run \a f(p). Returns negative number |
---|
22 | on error, otherwise \a t is set to the new thread. */ |
---|
23 | inline int create_thread(Thread& t, void *(*f) (void *), void* p) { |
---|
24 | return pthread_create((pthread_t*)&t, 0, f, p); |
---|
25 | } |
---|
26 | |
---|
27 | /** |
---|
28 | "Mutual-exclusion lock" for simple multithreaded programs. Calling |
---|
29 | lock() will wait until nobody else has the lock and then will |
---|
30 | return. <i>Calling lock() more than once will "deadlock"!</i> |
---|
31 | To avoid this, use RecursiveMutex. |
---|
32 | */ |
---|
33 | class Mutex { |
---|
34 | friend class SignalMutex; |
---|
35 | pthread_mutex_t mutex; |
---|
36 | Mutex(const Mutex&); |
---|
37 | Mutex& operator=(const Mutex&); |
---|
38 | protected: |
---|
39 | Mutex(const pthread_mutexattr_t* a) {pthread_mutex_init(&mutex, a);} |
---|
40 | public: |
---|
41 | Mutex() {pthread_mutex_init(&mutex, 0);} |
---|
42 | void lock() {pthread_mutex_lock(&mutex);} |
---|
43 | void unlock() {pthread_mutex_unlock(&mutex);} |
---|
44 | bool trylock() {return pthread_mutex_trylock(&mutex) == 0;} |
---|
45 | ~Mutex() {pthread_mutex_destroy(&mutex);} |
---|
46 | }; |
---|
47 | |
---|
48 | /** |
---|
49 | A portable "semaphore". A thread that holds this lock() can call |
---|
50 | wait(), which will unlock it, then wait for another thread to |
---|
51 | call signal(), then lock() it again. |
---|
52 | |
---|
53 | The other thread can call signal() at any time, though usually |
---|
54 | it will have called lock() as well, as the lock can be used to |
---|
55 | protect the data that is actually being shared between the threads. |
---|
56 | |
---|
57 | If more than one thread is in wait(), then calling signal_one() |
---|
58 | will only wake one of them up. This may be more efficient, and |
---|
59 | can be done safely if all threads that call wait() also call |
---|
60 | signal_one() just before calling unlock(). |
---|
61 | |
---|
62 | Warning: wait() can return even if signal() was not called. You |
---|
63 | must then check other data (protected by the lock()) to see if |
---|
64 | the condition really is fulfilled. In many cases this is the |
---|
65 | best implementation, it is also necessary to work around design |
---|
66 | errors in Windows, where always returns after 1/2 second to |
---|
67 | avoid a deadlock due to the non-atomic nature of Windows calls. |
---|
68 | */ |
---|
69 | class SignalMutex : public Mutex { |
---|
70 | pthread_cond_t cond; |
---|
71 | public: |
---|
72 | SignalMutex() : Mutex() {pthread_cond_init(&cond, 0);} |
---|
73 | void signal() {pthread_cond_broadcast(&cond);} |
---|
74 | void signal_one() {pthread_cond_signal(&cond);} |
---|
75 | void wait() {pthread_cond_wait(&cond, &mutex);} |
---|
76 | }; |
---|
77 | |
---|
78 | // Linux supports recursive locks, use them directly, with some cheating: |
---|
79 | #if defined(PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP) || defined(PTHREAD_MUTEX_RECURSIVE) |
---|
80 | |
---|
81 | extern pthread_mutexattr_t Mutex_attrib; |
---|
82 | |
---|
83 | class RecursiveMutex : public Mutex { |
---|
84 | public: |
---|
85 | RecursiveMutex() : Mutex(&Mutex_attrib) {} |
---|
86 | }; |
---|
87 | |
---|
88 | #else // standard pthread mutexes need a bit of work to be recursive: |
---|
89 | |
---|
90 | /** |
---|
91 | "Mutual exclusion lock" to protect data in multithreaded programs. |
---|
92 | This is a "recursive lock". Calling lock() will wait until nobody |
---|
93 | else has the lock and then will take it. Calling lock() multiple |
---|
94 | times by the same thread is allowed, and unlock() must then be |
---|
95 | called the same number of times before another thread can get the |
---|
96 | lock. |
---|
97 | */ |
---|
98 | class RecursiveMutex : public Mutex { |
---|
99 | pthread_t owner; |
---|
100 | int counter; |
---|
101 | public: |
---|
102 | RecursiveMutex() : Mutex(), counter(0) {} |
---|
103 | void lock() { |
---|
104 | if (!counter || owner != pthread_self()) { |
---|
105 | Mutex::lock(); |
---|
106 | owner = pthread_self(); |
---|
107 | counter = 1; |
---|
108 | } else { |
---|
109 | ++counter; |
---|
110 | } |
---|
111 | } |
---|
112 | bool trylock() { |
---|
113 | if (!counter || owner != pthread_self()) { |
---|
114 | if (!Mutex::trylock()) return false; |
---|
115 | owner = pthread_self(); |
---|
116 | } |
---|
117 | counter++; |
---|
118 | return true; |
---|
119 | } |
---|
120 | void unlock() {if (!--counter) Mutex::unlock();} |
---|
121 | }; |
---|
122 | |
---|
123 | #endif |
---|
124 | |
---|
125 | #else // _WIN32: |
---|
126 | |
---|
127 | # define _WIN32_WINNT 0x0500 |
---|
128 | # include <Windows.h> |
---|
129 | # include <process.h> |
---|
130 | // undefine some of the more annoying crap: |
---|
131 | # undef DELETE |
---|
132 | # undef ERROR |
---|
133 | # undef IN |
---|
134 | # undef OUT |
---|
135 | # undef POINT |
---|
136 | # undef far |
---|
137 | # undef max |
---|
138 | # undef min |
---|
139 | # undef near |
---|
140 | |
---|
141 | namespace fltk { |
---|
142 | |
---|
143 | typedef unsigned long Thread; |
---|
144 | |
---|
145 | inline int create_thread(Thread& t, void *(*f) (void *), void* p) { |
---|
146 | return t = (Thread)_beginthread((void( __cdecl * )( void * ))f, 0, p); |
---|
147 | } |
---|
148 | |
---|
149 | class FL_API Mutex { |
---|
150 | CRITICAL_SECTION cs; |
---|
151 | Mutex(const Mutex&); |
---|
152 | Mutex& operator=(const Mutex&); |
---|
153 | public: |
---|
154 | Mutex() {InitializeCriticalSection(&cs);} |
---|
155 | void lock() {while (!TryEnterCriticalSection(&cs)) SwitchToThread();} |
---|
156 | void unlock() {LeaveCriticalSection(&cs);} |
---|
157 | bool trylock() {return TryEnterCriticalSection(&cs);} |
---|
158 | ~Mutex() {DeleteCriticalSection(&cs);} |
---|
159 | }; |
---|
160 | |
---|
161 | // After many experiments we have determined that this very stupid |
---|
162 | // implementation has the lowest overhead: |
---|
163 | class FL_API SignalMutex : public Mutex { |
---|
164 | public: |
---|
165 | SignalMutex() : Mutex() {} |
---|
166 | void signal() {} |
---|
167 | void signal_one() {} |
---|
168 | void wait() { |
---|
169 | // the following three calls should be atomic, sigh... |
---|
170 | unlock(); |
---|
171 | SwitchToThread(); |
---|
172 | lock(); |
---|
173 | } |
---|
174 | }; |
---|
175 | |
---|
176 | typedef Mutex RecursiveMutex; |
---|
177 | |
---|
178 | #endif |
---|
179 | |
---|
180 | /** |
---|
181 | C++ convienence object for locking a Mutex. |
---|
182 | Creating a local one of these will lock() the mutex and it means |
---|
183 | unlock() will be called no matter how a function exits, because |
---|
184 | the destructor ~Guard() does an unlock(). |
---|
185 | |
---|
186 | \code |
---|
187 | static fltk::Mutex mutex; |
---|
188 | function() { |
---|
189 | fltk::Guard guard(mutex); |
---|
190 | do_stuff; |
---|
191 | throw_exceptions; |
---|
192 | if (test()) return; |
---|
193 | etc; |
---|
194 | } |
---|
195 | \endcode |
---|
196 | |
---|
197 | */ |
---|
198 | class FL_API Guard { |
---|
199 | Mutex& lock; |
---|
200 | public: |
---|
201 | Guard(Mutex& m) : lock(m) {lock.lock();} |
---|
202 | Guard(Mutex* m) : lock(*m) {lock.lock();} |
---|
203 | ~Guard() {lock.unlock();} |
---|
204 | }; |
---|
205 | |
---|
206 | /*! \} */ |
---|
207 | |
---|
208 | } |
---|
209 | |
---|
210 | #endif |
---|