[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2003, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | #ifndef INCLUDED_IMF_CHROMATICITIES_H |
---|
| 37 | #define INCLUDED_IMF_CHROMATICITIES_H |
---|
| 38 | |
---|
| 39 | //----------------------------------------------------------------------------- |
---|
| 40 | // |
---|
| 41 | // CIE (x,y) chromaticities, and conversions between |
---|
| 42 | // RGB tiples and CIE XYZ tristimulus values. |
---|
| 43 | // |
---|
| 44 | //----------------------------------------------------------------------------- |
---|
| 45 | |
---|
| 46 | #include <ImathVec.h> |
---|
| 47 | #include <ImathMatrix.h> |
---|
| 48 | |
---|
| 49 | namespace Imf { |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | struct Chromaticities |
---|
| 53 | { |
---|
| 54 | Imath::V2f red; |
---|
| 55 | Imath::V2f green; |
---|
| 56 | Imath::V2f blue; |
---|
| 57 | Imath::V2f white; |
---|
| 58 | |
---|
| 59 | Chromaticities (const Imath::V2f &red = Imath::V2f (0.6400f, 0.3300f), |
---|
| 60 | const Imath::V2f &green = Imath::V2f (0.3000f, 0.6000f), |
---|
| 61 | const Imath::V2f &blue = Imath::V2f (0.1500f, 0.0600f), |
---|
| 62 | const Imath::V2f &white = Imath::V2f (0.3127f, 0.3290f)); |
---|
| 63 | }; |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | // |
---|
| 67 | // Conversions between RGB and CIE XYZ |
---|
| 68 | // |
---|
| 69 | // RGB to XYZ: |
---|
| 70 | // |
---|
| 71 | // Given a set of chromaticities, c, and the luminance, Y, of the RGB |
---|
| 72 | // triple (1,1,1), or "white", RGBtoXYZ(c,Y) computes a matrix, M, so |
---|
| 73 | // that multiplying an RGB value, v, with M produces an equivalent |
---|
| 74 | // XYZ value, w. (w == v * M) |
---|
| 75 | // |
---|
| 76 | // If we define that |
---|
| 77 | // |
---|
| 78 | // (Xr, Yr, Zr) == (1, 0, 0) * M |
---|
| 79 | // (Xg, Yg, Zg) == (0, 1, 0) * M |
---|
| 80 | // (Xb, Yb, Zb) == (0, 0, 1) * M |
---|
| 81 | // (Xw, Yw, Zw) == (1, 1, 1) * M, |
---|
| 82 | // |
---|
| 83 | // then the following statements are true: |
---|
| 84 | // |
---|
| 85 | // Xr / (Xr + Yr + Zr) == c.red.x |
---|
| 86 | // Yr / (Xr + Yr + Zr) == c.red.y |
---|
| 87 | // |
---|
| 88 | // Xg / (Xg + Yg + Zg) == c.red.x |
---|
| 89 | // Yg / (Xg + Yg + Zg) == c.red.y |
---|
| 90 | // |
---|
| 91 | // Xb / (Xb + Yb + Zb) == c.red.x |
---|
| 92 | // Yb / (Xb + Yb + Zb) == c.red.y |
---|
| 93 | // |
---|
| 94 | // Xw / (Xw + Yw + Zw) == c.red.x |
---|
| 95 | // Yw / (Xw + Yw + Zw) == c.red.y |
---|
| 96 | // |
---|
| 97 | // Yw == Y. |
---|
| 98 | // |
---|
| 99 | // XYZ to RGB: |
---|
| 100 | // |
---|
| 101 | // YYZtoRGB(c,Y) returns RGBtoXYZ(c,Y).inverse(). |
---|
| 102 | // |
---|
| 103 | // Warning: |
---|
| 104 | // |
---|
| 105 | // It would seem that RGBtoXYZ() and XYZtoRGB() are all you need |
---|
| 106 | // to convert RGB values with one set of primary and white point |
---|
| 107 | // chromaticities into perceptually equivalent RGB values with |
---|
| 108 | // different primary and white point chromaticities: |
---|
| 109 | // |
---|
| 110 | // M44f M = RGBtoXYZ (chromaticities1, Y1) * |
---|
| 111 | // XYZtoRGB (chromaticities2, Y2); |
---|
| 112 | // |
---|
| 113 | // However, this simple conversion does not account for white point |
---|
| 114 | // adaptation, and produces undesirable results. The proper thing |
---|
| 115 | // to do is to perform a Bradford or a von Kries transform, which |
---|
| 116 | // moves the white point of the original color space to the white |
---|
| 117 | // point of the destination color space, dragging other colors with |
---|
| 118 | // it in a sensible fashion. |
---|
| 119 | // |
---|
| 120 | |
---|
| 121 | Imath::M44f RGBtoXYZ (const Chromaticities chroma, float Y); |
---|
| 122 | Imath::M44f XYZtoRGB (const Chromaticities chroma, float Y); |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | } // namespace Imf |
---|
| 126 | |
---|
| 127 | #endif |
---|