1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2003, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | #ifndef INCLUDED_IMF_CHROMATICITIES_H |
---|
37 | #define INCLUDED_IMF_CHROMATICITIES_H |
---|
38 | |
---|
39 | //----------------------------------------------------------------------------- |
---|
40 | // |
---|
41 | // CIE (x,y) chromaticities, and conversions between |
---|
42 | // RGB tiples and CIE XYZ tristimulus values. |
---|
43 | // |
---|
44 | //----------------------------------------------------------------------------- |
---|
45 | |
---|
46 | #include <ImathVec.h> |
---|
47 | #include <ImathMatrix.h> |
---|
48 | |
---|
49 | namespace Imf { |
---|
50 | |
---|
51 | |
---|
52 | struct Chromaticities |
---|
53 | { |
---|
54 | Imath::V2f red; |
---|
55 | Imath::V2f green; |
---|
56 | Imath::V2f blue; |
---|
57 | Imath::V2f white; |
---|
58 | |
---|
59 | Chromaticities (const Imath::V2f &red = Imath::V2f (0.6400f, 0.3300f), |
---|
60 | const Imath::V2f &green = Imath::V2f (0.3000f, 0.6000f), |
---|
61 | const Imath::V2f &blue = Imath::V2f (0.1500f, 0.0600f), |
---|
62 | const Imath::V2f &white = Imath::V2f (0.3127f, 0.3290f)); |
---|
63 | }; |
---|
64 | |
---|
65 | |
---|
66 | // |
---|
67 | // Conversions between RGB and CIE XYZ |
---|
68 | // |
---|
69 | // RGB to XYZ: |
---|
70 | // |
---|
71 | // Given a set of chromaticities, c, and the luminance, Y, of the RGB |
---|
72 | // triple (1,1,1), or "white", RGBtoXYZ(c,Y) computes a matrix, M, so |
---|
73 | // that multiplying an RGB value, v, with M produces an equivalent |
---|
74 | // XYZ value, w. (w == v * M) |
---|
75 | // |
---|
76 | // If we define that |
---|
77 | // |
---|
78 | // (Xr, Yr, Zr) == (1, 0, 0) * M |
---|
79 | // (Xg, Yg, Zg) == (0, 1, 0) * M |
---|
80 | // (Xb, Yb, Zb) == (0, 0, 1) * M |
---|
81 | // (Xw, Yw, Zw) == (1, 1, 1) * M, |
---|
82 | // |
---|
83 | // then the following statements are true: |
---|
84 | // |
---|
85 | // Xr / (Xr + Yr + Zr) == c.red.x |
---|
86 | // Yr / (Xr + Yr + Zr) == c.red.y |
---|
87 | // |
---|
88 | // Xg / (Xg + Yg + Zg) == c.red.x |
---|
89 | // Yg / (Xg + Yg + Zg) == c.red.y |
---|
90 | // |
---|
91 | // Xb / (Xb + Yb + Zb) == c.red.x |
---|
92 | // Yb / (Xb + Yb + Zb) == c.red.y |
---|
93 | // |
---|
94 | // Xw / (Xw + Yw + Zw) == c.red.x |
---|
95 | // Yw / (Xw + Yw + Zw) == c.red.y |
---|
96 | // |
---|
97 | // Yw == Y. |
---|
98 | // |
---|
99 | // XYZ to RGB: |
---|
100 | // |
---|
101 | // YYZtoRGB(c,Y) returns RGBtoXYZ(c,Y).inverse(). |
---|
102 | // |
---|
103 | // Warning: |
---|
104 | // |
---|
105 | // It would seem that RGBtoXYZ() and XYZtoRGB() are all you need |
---|
106 | // to convert RGB values with one set of primary and white point |
---|
107 | // chromaticities into perceptually equivalent RGB values with |
---|
108 | // different primary and white point chromaticities: |
---|
109 | // |
---|
110 | // M44f M = RGBtoXYZ (chromaticities1, Y1) * |
---|
111 | // XYZtoRGB (chromaticities2, Y2); |
---|
112 | // |
---|
113 | // However, this simple conversion does not account for white point |
---|
114 | // adaptation, and produces undesirable results. The proper thing |
---|
115 | // to do is to perform a Bradford or a von Kries transform, which |
---|
116 | // moves the white point of the original color space to the white |
---|
117 | // point of the destination color space, dragging other colors with |
---|
118 | // it in a sensible fashion. |
---|
119 | // |
---|
120 | |
---|
121 | Imath::M44f RGBtoXYZ (const Chromaticities chroma, float Y); |
---|
122 | Imath::M44f XYZtoRGB (const Chromaticities chroma, float Y); |
---|
123 | |
---|
124 | |
---|
125 | } // namespace Imf |
---|
126 | |
---|
127 | #endif |
---|