1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | #ifndef INCLUDED_IMF_ENVMAP_H |
---|
37 | #define INCLUDED_IMF_ENVMAP_H |
---|
38 | |
---|
39 | //----------------------------------------------------------------------------- |
---|
40 | // |
---|
41 | // Environment maps |
---|
42 | // |
---|
43 | // Environment maps define a mapping from 3D directions to 2D |
---|
44 | // pixel space locations. Environment maps are typically used |
---|
45 | // in 3D rendering, for effects such as quickly approximating |
---|
46 | // how shiny surfaces reflect their environment. |
---|
47 | // |
---|
48 | // Environment maps can be stored in scanline-based or in tiled |
---|
49 | // OpenEXR files. The fact that an image is an environment map |
---|
50 | // is indicated by the presence of an EnvmapAttribute whose name |
---|
51 | // is "envmap". (Convenience functions to access this attribute |
---|
52 | // are defined in header file ImfStandardAttributes.h.) |
---|
53 | // The attribute's value defines the mapping from 3D directions |
---|
54 | // to 2D pixel space locations. |
---|
55 | // |
---|
56 | // This header file defines the set of possible EnvmapAttribute |
---|
57 | // values. |
---|
58 | // |
---|
59 | // For each possible EnvmapAttribute value, this header file also |
---|
60 | // defines a set of convienience functions to convert between 3D |
---|
61 | // directions and 2D pixel locations. |
---|
62 | // |
---|
63 | // Most of the convenience functions defined below require a |
---|
64 | // dataWindow parameter. For scanline-based images, and for |
---|
65 | // tiled images with level mode ONE_LEVEL, the dataWindow |
---|
66 | // parameter should be set to the image's data window, as |
---|
67 | // defined in the image header. For tiled images with level |
---|
68 | // mode MIPMAP_LEVELS or RIPMAP_LEVELS, the data window of the |
---|
69 | // image level that is being accessed should be used instead. |
---|
70 | // (See the dataWindowForLevel() methods in ImfTiledInputFile.h |
---|
71 | // and ImfTiledOutputFile.h.) |
---|
72 | // |
---|
73 | //----------------------------------------------------------------------------- |
---|
74 | |
---|
75 | #include <ImathBox.h> |
---|
76 | |
---|
77 | namespace Imf { |
---|
78 | |
---|
79 | //-------------------------------- |
---|
80 | // Supported environment map types |
---|
81 | //-------------------------------- |
---|
82 | |
---|
83 | enum Envmap |
---|
84 | { |
---|
85 | ENVMAP_LATLONG = 0, // Latitude-longitude environment map |
---|
86 | ENVMAP_CUBE = 1, // Cube map |
---|
87 | |
---|
88 | NUM_ENVMAPTYPES // Number of different environment map types |
---|
89 | }; |
---|
90 | |
---|
91 | |
---|
92 | //------------------------------------------------------------------------- |
---|
93 | // Latitude-Longitude Map: |
---|
94 | // |
---|
95 | // The environment is projected onto the image using polar coordinates |
---|
96 | // (latitude and longitude). A pixel's x coordinate corresponds to |
---|
97 | // its longitude, and the y coordinate corresponds to its latitude. |
---|
98 | // Pixel (dataWindow.min.x, dataWindow.min.y) has latitude +pi/2 and |
---|
99 | // longitude +pi; pixel (dataWindow.max.x, dataWindow.max.y) has |
---|
100 | // latitude -pi/2 and longitude -pi. |
---|
101 | // |
---|
102 | // In 3D space, latitudes -pi/2 and +pi/2 correspond to the negative and |
---|
103 | // positive y direction. Latitude 0, longitude 0 points into positive |
---|
104 | // z direction; and latitude 0, longitude pi/2 points into positive x |
---|
105 | // direction. |
---|
106 | // |
---|
107 | // The size of the data window should be 2*N by N pixels (width by height), |
---|
108 | // where N can be any integer greater than 0. |
---|
109 | //------------------------------------------------------------------------- |
---|
110 | |
---|
111 | namespace LatLongMap |
---|
112 | { |
---|
113 | //---------------------------------------------------- |
---|
114 | // Convert a 3D direction to a 2D vector whose x and y |
---|
115 | // components represent the corresponding latitude |
---|
116 | // and longitude. |
---|
117 | //---------------------------------------------------- |
---|
118 | |
---|
119 | Imath::V2f latLong (const Imath::V3f &direction); |
---|
120 | |
---|
121 | |
---|
122 | //-------------------------------------------------------- |
---|
123 | // Convert the position of a pixel to a 2D vector whose |
---|
124 | // x and y components represent the corresponding latitude |
---|
125 | // and longitude. |
---|
126 | //-------------------------------------------------------- |
---|
127 | |
---|
128 | Imath::V2f latLong (const Imath::Box2i &dataWindow, |
---|
129 | const Imath::V2f &pixelPosition); |
---|
130 | |
---|
131 | |
---|
132 | //------------------------------------------------------------- |
---|
133 | // Convert a 2D vector, whose x and y components represent |
---|
134 | // longitude and latitude, into a corresponding pixel position. |
---|
135 | //------------------------------------------------------------- |
---|
136 | |
---|
137 | Imath::V2f pixelPosition (const Imath::Box2i &dataWindow, |
---|
138 | const Imath::V2f &latLong); |
---|
139 | |
---|
140 | |
---|
141 | //----------------------------------------------------- |
---|
142 | // Convert a 3D direction vector into a corresponding |
---|
143 | // pixel position. pixelPosition(dw,dir) is equivalent |
---|
144 | // to pixelPosition(dw,latLong(dw,dir)). |
---|
145 | //----------------------------------------------------- |
---|
146 | |
---|
147 | Imath::V2f pixelPosition (const Imath::Box2i &dataWindow, |
---|
148 | const Imath::V3f &direction); |
---|
149 | |
---|
150 | |
---|
151 | //-------------------------------------------------------- |
---|
152 | // Convert the position of a pixel in a latitude-longitude |
---|
153 | // map into a corresponding 3D direction. |
---|
154 | //-------------------------------------------------------- |
---|
155 | |
---|
156 | Imath::V3f direction (const Imath::Box2i &dataWindow, |
---|
157 | const Imath::V2f &pixelPosition); |
---|
158 | } |
---|
159 | |
---|
160 | |
---|
161 | //-------------------------------------------------------------- |
---|
162 | // Cube Map: |
---|
163 | // |
---|
164 | // The environment is projected onto the six faces of an |
---|
165 | // axis-aligned cube. The cube's faces are then arranged |
---|
166 | // in a 2D image as shown below. |
---|
167 | // |
---|
168 | // 2-----------3 |
---|
169 | // / /| |
---|
170 | // / / | Y |
---|
171 | // / / | | |
---|
172 | // 6-----------7 | | |
---|
173 | // | | | | |
---|
174 | // | | | | |
---|
175 | // | 0 | 1 *------- X |
---|
176 | // | | / / |
---|
177 | // | | / / |
---|
178 | // | |/ / |
---|
179 | // 4-----------5 Z |
---|
180 | // |
---|
181 | // dataWindow.min |
---|
182 | // / |
---|
183 | // / |
---|
184 | // +-----------+ |
---|
185 | // |3 Y 7| |
---|
186 | // | | | |
---|
187 | // | | | |
---|
188 | // | ---+---Z | +X face |
---|
189 | // | | | |
---|
190 | // | | | |
---|
191 | // |1 5| |
---|
192 | // +-----------+ |
---|
193 | // |6 Y 2| |
---|
194 | // | | | |
---|
195 | // | | | |
---|
196 | // | Z---+--- | -X face |
---|
197 | // | | | |
---|
198 | // | | | |
---|
199 | // |4 0| |
---|
200 | // +-----------+ |
---|
201 | // |6 Z 7| |
---|
202 | // | | | |
---|
203 | // | | | |
---|
204 | // | ---+---X | +Y face |
---|
205 | // | | | |
---|
206 | // | | | |
---|
207 | // |2 3| |
---|
208 | // +-----------+ |
---|
209 | // |0 1| |
---|
210 | // | | | |
---|
211 | // | | | |
---|
212 | // | ---+---X | -Y face |
---|
213 | // | | | |
---|
214 | // | | | |
---|
215 | // |4 Z 5| |
---|
216 | // +-----------+ |
---|
217 | // |7 Y 6| |
---|
218 | // | | | |
---|
219 | // | | | |
---|
220 | // | X---+--- | +Z face |
---|
221 | // | | | |
---|
222 | // | | | |
---|
223 | // |5 4| |
---|
224 | // +-----------+ |
---|
225 | // |2 Y 3| |
---|
226 | // | | | |
---|
227 | // | | | |
---|
228 | // | ---+---X | -Z face |
---|
229 | // | | | |
---|
230 | // | | | |
---|
231 | // |0 1| |
---|
232 | // +-----------+ |
---|
233 | // / |
---|
234 | // / |
---|
235 | // dataWindow.max |
---|
236 | // |
---|
237 | // The size of the data window should be N by 6*N pixels |
---|
238 | // (width by height), where N can be any integer greater |
---|
239 | // than 0. |
---|
240 | // |
---|
241 | //-------------------------------------------------------------- |
---|
242 | |
---|
243 | //------------------------------------ |
---|
244 | // Names for the six faces of the cube |
---|
245 | //------------------------------------ |
---|
246 | |
---|
247 | enum CubeMapFace |
---|
248 | { |
---|
249 | CUBEFACE_POS_X, // +X face |
---|
250 | CUBEFACE_NEG_X, // -X face |
---|
251 | CUBEFACE_POS_Y, // +Y face |
---|
252 | CUBEFACE_NEG_Y, // -Y face |
---|
253 | CUBEFACE_POS_Z, // +Z face |
---|
254 | CUBEFACE_NEG_Z, // -Z face |
---|
255 | }; |
---|
256 | |
---|
257 | namespace CubeMap |
---|
258 | { |
---|
259 | //--------------------------------------------- |
---|
260 | // Width and height of a cube's face, in pixels |
---|
261 | //--------------------------------------------- |
---|
262 | |
---|
263 | int sizeOfFace (const Imath::Box2i &dataWindow); |
---|
264 | |
---|
265 | |
---|
266 | //------------------------------------------ |
---|
267 | // Compute the region in the environment map |
---|
268 | // that is covered by the specified face. |
---|
269 | //------------------------------------------ |
---|
270 | |
---|
271 | Imath::Box2i dataWindowForFace (CubeMapFace face, |
---|
272 | const Imath::Box2i &dataWindow); |
---|
273 | |
---|
274 | |
---|
275 | //---------------------------------------------------- |
---|
276 | // Convert the coordinates of a pixel within a face |
---|
277 | // [in the range from (0,0) to (s-1,s-1), where |
---|
278 | // s == sizeOfFace(dataWindow)] to pixel coordinates |
---|
279 | // in the environment map. |
---|
280 | //---------------------------------------------------- |
---|
281 | |
---|
282 | Imath::V2f pixelPosition (CubeMapFace face, |
---|
283 | const Imath::Box2i &dataWindow, |
---|
284 | Imath::V2f positionInFace); |
---|
285 | |
---|
286 | |
---|
287 | //-------------------------------------------------------------- |
---|
288 | // Convert a 3D direction into a cube face, and a pixel position |
---|
289 | // within that face. |
---|
290 | // |
---|
291 | // If you have a 3D direction, dir, the following code fragment |
---|
292 | // finds the position, pos, of the corresponding pixel in an |
---|
293 | // environment map with data window dw: |
---|
294 | // |
---|
295 | // CubeMapFace f; |
---|
296 | // V2f pif, pos; |
---|
297 | // |
---|
298 | // faceAndPixelPosition (dir, dw, f, pif); |
---|
299 | // pos = pixelPosition (f, dw, pif); |
---|
300 | // |
---|
301 | //-------------------------------------------------------------- |
---|
302 | |
---|
303 | void faceAndPixelPosition (const Imath::V3f &direction, |
---|
304 | const Imath::Box2i &dataWindow, |
---|
305 | CubeMapFace &face, |
---|
306 | Imath::V2f &positionInFace); |
---|
307 | |
---|
308 | |
---|
309 | // -------------------------------------------------------- |
---|
310 | // Given a cube face and a pixel position within that face, |
---|
311 | // compute the corresponding 3D direction. |
---|
312 | // -------------------------------------------------------- |
---|
313 | |
---|
314 | Imath::V3f direction (CubeMapFace face, |
---|
315 | const Imath::Box2i &dataWindow, |
---|
316 | const Imath::V2f &positionInFace); |
---|
317 | } |
---|
318 | |
---|
319 | |
---|
320 | } // namespace Imf |
---|
321 | |
---|
322 | #endif |
---|