1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHBOXALGO_H |
---|
38 | #define INCLUDED_IMATHBOXALGO_H |
---|
39 | |
---|
40 | |
---|
41 | //--------------------------------------------------------------------------- |
---|
42 | // |
---|
43 | // This file contains algorithms applied to or in conjunction |
---|
44 | // with bounding boxes (Imath::Box). These algorithms require |
---|
45 | // more headers to compile. The assumption made is that these |
---|
46 | // functions are called much less often than the basic box |
---|
47 | // functions or these functions require more support classes. |
---|
48 | // |
---|
49 | // Contains: |
---|
50 | // |
---|
51 | // T clip<T>(const T& in, const Box<T>& box) |
---|
52 | // |
---|
53 | // Vec3<T> closestPointOnBox(const Vec3<T>&, const Box<Vec3<T>>& ) |
---|
54 | // |
---|
55 | // Vec3<T> closestPointInBox(const Vec3<T>&, const Box<Vec3<T>>& ) |
---|
56 | // |
---|
57 | // void transform(Box<Vec3<T>>&, const Matrix44<T>&) |
---|
58 | // |
---|
59 | // bool findEntryAndExitPoints(const Line<T> &line, |
---|
60 | // const Box< Vec3<T> > &box, |
---|
61 | // Vec3<T> &enterPoint, |
---|
62 | // Vec3<T> &exitPoint) |
---|
63 | // |
---|
64 | // bool intersects(const Box<Vec3<T>> &box, |
---|
65 | // const Line3<T> &line, |
---|
66 | // Vec3<T> result) |
---|
67 | // |
---|
68 | // bool intersects(const Box<Vec3<T>> &box, const Line3<T> &line) |
---|
69 | // |
---|
70 | //--------------------------------------------------------------------------- |
---|
71 | |
---|
72 | #include <ImathBox.h> |
---|
73 | #include <ImathMatrix.h> |
---|
74 | #include <ImathLineAlgo.h> |
---|
75 | #include <ImathPlane.h> |
---|
76 | |
---|
77 | namespace Imath { |
---|
78 | |
---|
79 | |
---|
80 | template <class T> |
---|
81 | inline T clip(const T& in, const Box<T>& box) |
---|
82 | { |
---|
83 | // |
---|
84 | // Clip a point so that it lies inside the given bbox |
---|
85 | // |
---|
86 | |
---|
87 | T out; |
---|
88 | |
---|
89 | for (int i=0; i<(int)box.min.dimensions(); i++) |
---|
90 | { |
---|
91 | if (in[i] < box.min[i]) out[i] = box.min[i]; |
---|
92 | else if (in[i] > box.max[i]) out[i] = box.max[i]; |
---|
93 | else out[i] = in[i]; |
---|
94 | } |
---|
95 | |
---|
96 | return out; |
---|
97 | } |
---|
98 | |
---|
99 | |
---|
100 | // |
---|
101 | // Return p if p is inside the box. |
---|
102 | // |
---|
103 | |
---|
104 | template <class T> |
---|
105 | Vec3<T> |
---|
106 | closestPointInBox(const Vec3<T>& p, const Box< Vec3<T> >& box ) |
---|
107 | { |
---|
108 | Imath::V3f b; |
---|
109 | |
---|
110 | if (p.x < box.min.x) |
---|
111 | b.x = box.min.x; |
---|
112 | else if (p.x > box.max.x) |
---|
113 | b.x = box.max.x; |
---|
114 | else |
---|
115 | b.x = p.x; |
---|
116 | |
---|
117 | if (p.y < box.min.y) |
---|
118 | b.y = box.min.y; |
---|
119 | else if (p.y > box.max.y) |
---|
120 | b.y = box.max.y; |
---|
121 | else |
---|
122 | b.y = p.y; |
---|
123 | |
---|
124 | if (p.z < box.min.z) |
---|
125 | b.z = box.min.z; |
---|
126 | else if (p.z > box.max.z) |
---|
127 | b.z = box.max.z; |
---|
128 | else |
---|
129 | b.z = p.z; |
---|
130 | |
---|
131 | return b; |
---|
132 | } |
---|
133 | |
---|
134 | template <class T> |
---|
135 | Vec3<T> closestPointOnBox(const Vec3<T>& pt, const Box< Vec3<T> >& box ) |
---|
136 | { |
---|
137 | // |
---|
138 | // This sucker is specialized to work with a Vec3f and a box |
---|
139 | // made of Vec3fs. |
---|
140 | // |
---|
141 | |
---|
142 | Vec3<T> result; |
---|
143 | |
---|
144 | // trivial cases first |
---|
145 | if (box.isEmpty()) |
---|
146 | return pt; |
---|
147 | else if (pt == box.center()) |
---|
148 | { |
---|
149 | // middle of z side |
---|
150 | result[0] = (box.max[0] + box.min[0])/2.0; |
---|
151 | result[1] = (box.max[1] + box.min[1])/2.0; |
---|
152 | result[2] = box.max[2]; |
---|
153 | } |
---|
154 | else |
---|
155 | { |
---|
156 | // Find the closest point on a unit box (from -1 to 1), |
---|
157 | // then scale up. |
---|
158 | |
---|
159 | // Find the vector from center to the point, then scale |
---|
160 | // to a unit box. |
---|
161 | Vec3<T> vec = pt - box.center(); |
---|
162 | T sizeX = box.max[0]-box.min[0]; |
---|
163 | T sizeY = box.max[1]-box.min[1]; |
---|
164 | T sizeZ = box.max[2]-box.min[2]; |
---|
165 | |
---|
166 | T halfX = sizeX/2.0; |
---|
167 | T halfY = sizeY/2.0; |
---|
168 | T halfZ = sizeZ/2.0; |
---|
169 | if (halfX > 0.0) |
---|
170 | vec[0] /= halfX; |
---|
171 | if (halfY > 0.0) |
---|
172 | vec[1] /= halfY; |
---|
173 | if (halfZ > 0.0) |
---|
174 | vec[2] /= halfZ; |
---|
175 | |
---|
176 | // Side to snap side that has greatest magnitude in the vector. |
---|
177 | Vec3<T> mag; |
---|
178 | mag[0] = fabs(vec[0]); |
---|
179 | mag[1] = fabs(vec[1]); |
---|
180 | mag[2] = fabs(vec[2]); |
---|
181 | |
---|
182 | result = mag; |
---|
183 | |
---|
184 | // Check if beyond corners |
---|
185 | if (result[0] > 1.0) |
---|
186 | result[0] = 1.0; |
---|
187 | if (result[1] > 1.0) |
---|
188 | result[1] = 1.0; |
---|
189 | if (result[2] > 1.0) |
---|
190 | result[2] = 1.0; |
---|
191 | |
---|
192 | // snap to appropriate side |
---|
193 | if ((mag[0] > mag[1]) && (mag[0] > mag[2])) |
---|
194 | { |
---|
195 | result[0] = 1.0; |
---|
196 | } |
---|
197 | else if ((mag[1] > mag[0]) && (mag[1] > mag[2])) |
---|
198 | { |
---|
199 | result[1] = 1.0; |
---|
200 | } |
---|
201 | else if ((mag[2] > mag[0]) && (mag[2] > mag[1])) |
---|
202 | { |
---|
203 | result[2] = 1.0; |
---|
204 | } |
---|
205 | else if ((mag[0] == mag[1]) && (mag[0] == mag[2])) |
---|
206 | { |
---|
207 | // corner |
---|
208 | result = Vec3<T>(1,1,1); |
---|
209 | } |
---|
210 | else if (mag[0] == mag[1]) |
---|
211 | { |
---|
212 | // edge parallel with z |
---|
213 | result[0] = 1.0; |
---|
214 | result[1] = 1.0; |
---|
215 | } |
---|
216 | else if (mag[0] == mag[2]) |
---|
217 | { |
---|
218 | // edge parallel with y |
---|
219 | result[0] = 1.0; |
---|
220 | result[2] = 1.0; |
---|
221 | } |
---|
222 | else if (mag[1] == mag[2]) |
---|
223 | { |
---|
224 | // edge parallel with x |
---|
225 | result[1] = 1.0; |
---|
226 | result[2] = 1.0; |
---|
227 | } |
---|
228 | |
---|
229 | // Now make everything point the right way |
---|
230 | for (int i=0; i < 3; i++) |
---|
231 | { |
---|
232 | if (vec[i] < 0.0) |
---|
233 | result[i] = -result[i]; |
---|
234 | } |
---|
235 | |
---|
236 | // scale back up and move to center |
---|
237 | result[0] *= halfX; |
---|
238 | result[1] *= halfY; |
---|
239 | result[2] *= halfZ; |
---|
240 | |
---|
241 | result += box.center(); |
---|
242 | } |
---|
243 | return result; |
---|
244 | } |
---|
245 | |
---|
246 | template <class S, class T> |
---|
247 | Box< Vec3<S> > |
---|
248 | transform(const Box< Vec3<S> >& box, const Matrix44<T>& m) |
---|
249 | { |
---|
250 | // Transforms Box3f by matrix, enlarging Box3f to contain result. |
---|
251 | // Clever method courtesy of Graphics Gems, pp. 548-550 |
---|
252 | // |
---|
253 | // This works for projection matrices as well as simple affine |
---|
254 | // transformations. Coordinates of the box are rehomogenized if there |
---|
255 | // is a projection matrix |
---|
256 | |
---|
257 | // a transformed empty box is still empty |
---|
258 | if (box.isEmpty()) |
---|
259 | return box; |
---|
260 | |
---|
261 | // If the last column is close enuf to ( 0 0 0 1 ) then we use the |
---|
262 | // fast, affine version. The tricky affine method could maybe be |
---|
263 | // extended to deal with the projection case as well, but its not |
---|
264 | // worth it right now. |
---|
265 | |
---|
266 | if (m[0][3] * m[0][3] + m[1][3] * m[1][3] + m[2][3] * m[2][3] |
---|
267 | + (1.0 - m[3][3]) * (1.0 - m[3][3]) < 0.00001) |
---|
268 | { |
---|
269 | // Affine version, use the Graphics Gems hack |
---|
270 | int i, j; |
---|
271 | Box< Vec3<S> > newBox; |
---|
272 | |
---|
273 | for (i = 0; i < 3; i++) |
---|
274 | { |
---|
275 | newBox.min[i] = newBox.max[i] = (S) m[3][i]; |
---|
276 | |
---|
277 | for (j = 0; j < 3; j++) |
---|
278 | { |
---|
279 | float a, b; |
---|
280 | |
---|
281 | a = (S) m[j][i] * box.min[j]; |
---|
282 | b = (S) m[j][i] * box.max[j]; |
---|
283 | |
---|
284 | if (a < b) |
---|
285 | { |
---|
286 | newBox.min[i] += a; |
---|
287 | newBox.max[i] += b; |
---|
288 | } |
---|
289 | else |
---|
290 | { |
---|
291 | newBox.min[i] += b; |
---|
292 | newBox.max[i] += a; |
---|
293 | } |
---|
294 | } |
---|
295 | } |
---|
296 | |
---|
297 | return newBox; |
---|
298 | } |
---|
299 | |
---|
300 | // This is a projection matrix. Do things the naive way. |
---|
301 | Vec3<S> points[8]; |
---|
302 | |
---|
303 | /* Set up the eight points at the corners of the extent */ |
---|
304 | points[0][0] = points[1][0] = points[2][0] = points[3][0] = box.min[0]; |
---|
305 | points[4][0] = points[5][0] = points[6][0] = points[7][0] = box.max[0]; |
---|
306 | |
---|
307 | points[0][1] = points[1][1] = points[4][1] = points[5][1] = box.min[1]; |
---|
308 | points[2][1] = points[3][1] = points[6][1] = points[7][1] = box.max[1]; |
---|
309 | |
---|
310 | points[0][2] = points[2][2] = points[4][2] = points[6][2] = box.min[2]; |
---|
311 | points[1][2] = points[3][2] = points[5][2] = points[7][2] = box.max[2]; |
---|
312 | |
---|
313 | Box< Vec3<S> > newBox; |
---|
314 | for (int i = 0; i < 8; i++) |
---|
315 | newBox.extendBy(points[i] * m); |
---|
316 | |
---|
317 | return newBox; |
---|
318 | } |
---|
319 | |
---|
320 | template <class T> |
---|
321 | Box< Vec3<T> > |
---|
322 | affineTransform(const Box< Vec3<T> > &bbox, const Matrix44<T> &M) |
---|
323 | { |
---|
324 | float min0, max0, min1, max1, min2, max2, a, b; |
---|
325 | float min0new, max0new, min1new, max1new, min2new, max2new; |
---|
326 | |
---|
327 | min0 = bbox.min[0]; |
---|
328 | max0 = bbox.max[0]; |
---|
329 | min1 = bbox.min[1]; |
---|
330 | max1 = bbox.max[1]; |
---|
331 | min2 = bbox.min[2]; |
---|
332 | max2 = bbox.max[2]; |
---|
333 | |
---|
334 | min0new = max0new = M[3][0]; |
---|
335 | a = M[0][0] * min0; |
---|
336 | b = M[0][0] * max0; |
---|
337 | if (a < b) { |
---|
338 | min0new += a; |
---|
339 | max0new += b; |
---|
340 | } else { |
---|
341 | min0new += b; |
---|
342 | max0new += a; |
---|
343 | } |
---|
344 | a = M[1][0] * min1; |
---|
345 | b = M[1][0] * max1; |
---|
346 | if (a < b) { |
---|
347 | min0new += a; |
---|
348 | max0new += b; |
---|
349 | } else { |
---|
350 | min0new += b; |
---|
351 | max0new += a; |
---|
352 | } |
---|
353 | a = M[2][0] * min2; |
---|
354 | b = M[2][0] * max2; |
---|
355 | if (a < b) { |
---|
356 | min0new += a; |
---|
357 | max0new += b; |
---|
358 | } else { |
---|
359 | min0new += b; |
---|
360 | max0new += a; |
---|
361 | } |
---|
362 | |
---|
363 | min1new = max1new = M[3][1]; |
---|
364 | a = M[0][1] * min0; |
---|
365 | b = M[0][1] * max0; |
---|
366 | if (a < b) { |
---|
367 | min1new += a; |
---|
368 | max1new += b; |
---|
369 | } else { |
---|
370 | min1new += b; |
---|
371 | max1new += a; |
---|
372 | } |
---|
373 | a = M[1][1] * min1; |
---|
374 | b = M[1][1] * max1; |
---|
375 | if (a < b) { |
---|
376 | min1new += a; |
---|
377 | max1new += b; |
---|
378 | } else { |
---|
379 | min1new += b; |
---|
380 | max1new += a; |
---|
381 | } |
---|
382 | a = M[2][1] * min2; |
---|
383 | b = M[2][1] * max2; |
---|
384 | if (a < b) { |
---|
385 | min1new += a; |
---|
386 | max1new += b; |
---|
387 | } else { |
---|
388 | min1new += b; |
---|
389 | max1new += a; |
---|
390 | } |
---|
391 | |
---|
392 | min2new = max2new = M[3][2]; |
---|
393 | a = M[0][2] * min0; |
---|
394 | b = M[0][2] * max0; |
---|
395 | if (a < b) { |
---|
396 | min2new += a; |
---|
397 | max2new += b; |
---|
398 | } else { |
---|
399 | min2new += b; |
---|
400 | max2new += a; |
---|
401 | } |
---|
402 | a = M[1][2] * min1; |
---|
403 | b = M[1][2] * max1; |
---|
404 | if (a < b) { |
---|
405 | min2new += a; |
---|
406 | max2new += b; |
---|
407 | } else { |
---|
408 | min2new += b; |
---|
409 | max2new += a; |
---|
410 | } |
---|
411 | a = M[2][2] * min2; |
---|
412 | b = M[2][2] * max2; |
---|
413 | if (a < b) { |
---|
414 | min2new += a; |
---|
415 | max2new += b; |
---|
416 | } else { |
---|
417 | min2new += b; |
---|
418 | max2new += a; |
---|
419 | } |
---|
420 | |
---|
421 | Box< Vec3<T> > xbbox; |
---|
422 | |
---|
423 | xbbox.min[0] = min0new; |
---|
424 | xbbox.max[0] = max0new; |
---|
425 | xbbox.min[1] = min1new; |
---|
426 | xbbox.max[1] = max1new; |
---|
427 | xbbox.min[2] = min2new; |
---|
428 | xbbox.max[2] = max2new; |
---|
429 | |
---|
430 | return xbbox; |
---|
431 | } |
---|
432 | |
---|
433 | |
---|
434 | template <class T> |
---|
435 | bool findEntryAndExitPoints(const Line3<T>& line, |
---|
436 | const Box<Vec3<T> >& box, |
---|
437 | Vec3<T> &enterPoint, |
---|
438 | Vec3<T> &exitPoint) |
---|
439 | { |
---|
440 | if ( box.isEmpty() ) return false; |
---|
441 | if ( line.distanceTo(box.center()) > box.size().length()/2. ) return false; |
---|
442 | |
---|
443 | Vec3<T> points[8], inter, bary; |
---|
444 | Plane3<T> plane; |
---|
445 | int i, v0, v1, v2; |
---|
446 | bool front = false, valid, validIntersection = false; |
---|
447 | |
---|
448 | // set up the eight coords of the corners of the box |
---|
449 | for(i = 0; i < 8; i++) |
---|
450 | { |
---|
451 | points[i].setValue( i & 01 ? box.min[0] : box.max[0], |
---|
452 | i & 02 ? box.min[1] : box.max[1], |
---|
453 | i & 04 ? box.min[2] : box.max[2]); |
---|
454 | } |
---|
455 | |
---|
456 | // intersect the 12 triangles. |
---|
457 | for(i = 0; i < 12; i++) |
---|
458 | { |
---|
459 | switch(i) |
---|
460 | { |
---|
461 | case 0: v0 = 2; v1 = 1; v2 = 0; break; // +z |
---|
462 | case 1: v0 = 2; v1 = 3; v2 = 1; break; |
---|
463 | |
---|
464 | case 2: v0 = 4; v1 = 5; v2 = 6; break; // -z |
---|
465 | case 3: v0 = 6; v1 = 5; v2 = 7; break; |
---|
466 | |
---|
467 | case 4: v0 = 0; v1 = 6; v2 = 2; break; // -x |
---|
468 | case 5: v0 = 0; v1 = 4; v2 = 6; break; |
---|
469 | |
---|
470 | case 6: v0 = 1; v1 = 3; v2 = 7; break; // +x |
---|
471 | case 7: v0 = 1; v1 = 7; v2 = 5; break; |
---|
472 | |
---|
473 | case 8: v0 = 1; v1 = 4; v2 = 0; break; // -y |
---|
474 | case 9: v0 = 1; v1 = 5; v2 = 4; break; |
---|
475 | |
---|
476 | case 10: v0 = 2; v1 = 7; v2 = 3; break; // +y |
---|
477 | case 11: v0 = 2; v1 = 6; v2 = 7; break; |
---|
478 | } |
---|
479 | if((valid=intersect (line, points[v0], points[v1], points[v2], |
---|
480 | inter, bary, front)) == true) |
---|
481 | { |
---|
482 | if(front == true) |
---|
483 | { |
---|
484 | enterPoint = inter; |
---|
485 | validIntersection = valid; |
---|
486 | } |
---|
487 | else |
---|
488 | { |
---|
489 | exitPoint = inter; |
---|
490 | validIntersection = valid; |
---|
491 | } |
---|
492 | } |
---|
493 | } |
---|
494 | return validIntersection; |
---|
495 | } |
---|
496 | |
---|
497 | template<class T> |
---|
498 | bool intersects(const Box< Vec3<T> > &box, |
---|
499 | const Line3<T> &line, |
---|
500 | Vec3<T> &result) |
---|
501 | { |
---|
502 | /* |
---|
503 | Fast Ray-Box Intersection |
---|
504 | by Andrew Woo |
---|
505 | from "Graphics Gems", Academic Press, 1990 |
---|
506 | */ |
---|
507 | |
---|
508 | const int right = 0; |
---|
509 | const int left = 1; |
---|
510 | const int middle = 2; |
---|
511 | |
---|
512 | const Vec3<T> &minB = box.min; |
---|
513 | const Vec3<T> &maxB = box.max; |
---|
514 | const Vec3<T> &origin = line.pos; |
---|
515 | const Vec3<T> &dir = line.dir; |
---|
516 | |
---|
517 | bool inside = true; |
---|
518 | char quadrant[3]; |
---|
519 | int whichPlane; |
---|
520 | float maxT[3]; |
---|
521 | float candidatePlane[3]; |
---|
522 | |
---|
523 | /* Find candidate planes; this loop can be avoided if |
---|
524 | rays cast all from the eye(assume perpsective view) */ |
---|
525 | for (int i=0; i<3; i++) |
---|
526 | { |
---|
527 | if(origin[i] < minB[i]) |
---|
528 | { |
---|
529 | quadrant[i] = left; |
---|
530 | candidatePlane[i] = minB[i]; |
---|
531 | inside = false; |
---|
532 | } |
---|
533 | else if (origin[i] > maxB[i]) |
---|
534 | { |
---|
535 | quadrant[i] = right; |
---|
536 | candidatePlane[i] = maxB[i]; |
---|
537 | inside = false; |
---|
538 | } |
---|
539 | else |
---|
540 | { |
---|
541 | quadrant[i] = middle; |
---|
542 | } |
---|
543 | } |
---|
544 | |
---|
545 | /* Ray origin inside bounding box */ |
---|
546 | if ( inside ) |
---|
547 | { |
---|
548 | result = origin; |
---|
549 | return true; |
---|
550 | } |
---|
551 | |
---|
552 | |
---|
553 | /* Calculate T distances to candidate planes */ |
---|
554 | for (int i = 0; i < 3; i++) |
---|
555 | { |
---|
556 | if (quadrant[i] != middle && dir[i] !=0.) |
---|
557 | { |
---|
558 | maxT[i] = (candidatePlane[i]-origin[i]) / dir[i]; |
---|
559 | } |
---|
560 | else |
---|
561 | { |
---|
562 | maxT[i] = -1.; |
---|
563 | } |
---|
564 | } |
---|
565 | |
---|
566 | /* Get largest of the maxT's for final choice of intersection */ |
---|
567 | whichPlane = 0; |
---|
568 | |
---|
569 | for (int i = 1; i < 3; i++) |
---|
570 | { |
---|
571 | if (maxT[whichPlane] < maxT[i]) |
---|
572 | { |
---|
573 | whichPlane = i; |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | /* Check final candidate actually inside box */ |
---|
578 | if (maxT[whichPlane] < 0.) return false; |
---|
579 | |
---|
580 | for (int i = 0; i < 3; i++) |
---|
581 | { |
---|
582 | if (whichPlane != i) |
---|
583 | { |
---|
584 | result[i] = origin[i] + maxT[whichPlane] *dir[i]; |
---|
585 | |
---|
586 | if ((quadrant[i] == right && result[i] < minB[i]) || |
---|
587 | (quadrant[i] == left && result[i] > maxB[i])) |
---|
588 | { |
---|
589 | return false; /* outside box */ |
---|
590 | } |
---|
591 | } |
---|
592 | else |
---|
593 | { |
---|
594 | result[i] = candidatePlane[i]; |
---|
595 | } |
---|
596 | } |
---|
597 | |
---|
598 | return true; |
---|
599 | } |
---|
600 | |
---|
601 | template<class T> |
---|
602 | bool intersects(const Box< Vec3<T> > &box, const Line3<T> &line) |
---|
603 | { |
---|
604 | Vec3<T> ignored; |
---|
605 | return intersects(box,line,ignored); |
---|
606 | } |
---|
607 | |
---|
608 | |
---|
609 | } // namespace Imath |
---|
610 | |
---|
611 | #endif |
---|