[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHEULER_H |
---|
| 38 | #define INCLUDED_IMATHEULER_H |
---|
| 39 | |
---|
| 40 | //---------------------------------------------------------------------- |
---|
| 41 | // |
---|
| 42 | // template class Euler<T> |
---|
| 43 | // |
---|
| 44 | // This class represents euler angle orientations. The class |
---|
| 45 | // inherits from Vec3 to it can be freely cast. The additional |
---|
| 46 | // information is the euler priorities rep. This class is |
---|
| 47 | // essentially a rip off of Ken Shoemake's GemsIV code. It has |
---|
| 48 | // been modified minimally to make it more understandable, but |
---|
| 49 | // hardly enough to make it easy to grok completely. |
---|
| 50 | // |
---|
| 51 | // There are 24 possible combonations of Euler angle |
---|
| 52 | // representations of which 12 are common in CG and you will |
---|
| 53 | // probably only use 6 of these which in this scheme are the |
---|
| 54 | // non-relative-non-repeating types. |
---|
| 55 | // |
---|
| 56 | // The representations can be partitioned according to two |
---|
| 57 | // criteria: |
---|
| 58 | // |
---|
| 59 | // 1) Are the angles measured relative to a set of fixed axis |
---|
| 60 | // or relative to each other (the latter being what happens |
---|
| 61 | // when rotation matrices are multiplied together and is |
---|
| 62 | // almost ubiquitous in the cg community) |
---|
| 63 | // |
---|
| 64 | // 2) Is one of the rotations repeated (ala XYX rotation) |
---|
| 65 | // |
---|
| 66 | // When you construct a given representation from scratch you |
---|
| 67 | // must order the angles according to their priorities. So, the |
---|
| 68 | // easiest is a softimage or aerospace (yaw/pitch/roll) ordering |
---|
| 69 | // of ZYX. |
---|
| 70 | // |
---|
| 71 | // float x_rot = 1; |
---|
| 72 | // float y_rot = 2; |
---|
| 73 | // float z_rot = 3; |
---|
| 74 | // |
---|
| 75 | // Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX); |
---|
| 76 | // -or- |
---|
| 77 | // Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX ); |
---|
| 78 | // |
---|
| 79 | // If instead, the order was YXZ for instance you would have to |
---|
| 80 | // do this: |
---|
| 81 | // |
---|
| 82 | // float x_rot = 1; |
---|
| 83 | // float y_rot = 2; |
---|
| 84 | // float z_rot = 3; |
---|
| 85 | // |
---|
| 86 | // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
---|
| 87 | // -or- |
---|
| 88 | // Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ ); |
---|
| 89 | // |
---|
| 90 | // Notice how the order you put the angles into the three slots |
---|
| 91 | // should correspond to the enum (YXZ) ordering. The input angle |
---|
| 92 | // vector is called the "ijk" vector -- not an "xyz" vector. The |
---|
| 93 | // ijk vector order is the same as the enum. If you treat the |
---|
| 94 | // Euler<> as a Vec<> (which it inherts from) you will find the |
---|
| 95 | // angles are ordered in the same way, i.e.: |
---|
| 96 | // |
---|
| 97 | // V3f v = angles; |
---|
| 98 | // // v.x == y_rot, v.y == x_rot, v.z == z_rot |
---|
| 99 | // |
---|
| 100 | // If you just want the x, y, and z angles stored in a vector in |
---|
| 101 | // that order, you can do this: |
---|
| 102 | // |
---|
| 103 | // V3f v = angles.toXYZVector() |
---|
| 104 | // // v.x == x_rot, v.y == y_rot, v.z == z_rot |
---|
| 105 | // |
---|
| 106 | // If you want to set the Euler with an XYZVector use the |
---|
| 107 | // optional layout argument: |
---|
| 108 | // |
---|
| 109 | // Eulerf angles(x_rot, y_rot, z_rot, |
---|
| 110 | // Eulerf::YXZ, |
---|
| 111 | // Eulerf::XYZLayout); |
---|
| 112 | // |
---|
| 113 | // This is the same as: |
---|
| 114 | // |
---|
| 115 | // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
---|
| 116 | // |
---|
| 117 | // Note that this won't do anything intelligent if you have a |
---|
| 118 | // repeated axis in the euler angles (e.g. XYX) |
---|
| 119 | // |
---|
| 120 | // If you need to use the "relative" versions of these, you will |
---|
| 121 | // need to use the "r" enums. |
---|
| 122 | // |
---|
| 123 | // The units of the rotation angles are assumed to be radians. |
---|
| 124 | // |
---|
| 125 | //---------------------------------------------------------------------- |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | #include <ImathMath.h> |
---|
| 129 | #include <ImathVec.h> |
---|
| 130 | #include <ImathQuat.h> |
---|
| 131 | #include <ImathMatrix.h> |
---|
| 132 | #include <ImathLimits.h> |
---|
| 133 | #include <iostream> |
---|
| 134 | |
---|
| 135 | namespace Imath { |
---|
| 136 | |
---|
| 137 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
| 138 | // Disable MS VC++ warnings about conversion from double to float |
---|
| 139 | #pragma warning(disable:4244) |
---|
| 140 | #endif |
---|
| 141 | |
---|
| 142 | template <class T> |
---|
| 143 | class Euler : public Vec3<T> |
---|
| 144 | { |
---|
| 145 | public: |
---|
| 146 | |
---|
| 147 | using Vec3<T>::x; |
---|
| 148 | using Vec3<T>::y; |
---|
| 149 | using Vec3<T>::z; |
---|
| 150 | |
---|
| 151 | enum Order |
---|
| 152 | { |
---|
| 153 | // |
---|
| 154 | // All 24 possible orderings |
---|
| 155 | // |
---|
| 156 | |
---|
| 157 | XYZ = 0x0101, // "usual" orderings |
---|
| 158 | XZY = 0x0001, |
---|
| 159 | YZX = 0x1101, |
---|
| 160 | YXZ = 0x1001, |
---|
| 161 | ZXY = 0x2101, |
---|
| 162 | ZYX = 0x2001, |
---|
| 163 | |
---|
| 164 | XZX = 0x0011, // first axis repeated |
---|
| 165 | XYX = 0x0111, |
---|
| 166 | YXY = 0x1011, |
---|
| 167 | YZY = 0x1111, |
---|
| 168 | ZYZ = 0x2011, |
---|
| 169 | ZXZ = 0x2111, |
---|
| 170 | |
---|
| 171 | XYZr = 0x2000, // relative orderings -- not common |
---|
| 172 | XZYr = 0x2100, |
---|
| 173 | YZXr = 0x1000, |
---|
| 174 | YXZr = 0x1100, |
---|
| 175 | ZXYr = 0x0000, |
---|
| 176 | ZYXr = 0x0100, |
---|
| 177 | |
---|
| 178 | XZXr = 0x2110, // relative first axis repeated |
---|
| 179 | XYXr = 0x2010, |
---|
| 180 | YXYr = 0x1110, |
---|
| 181 | YZYr = 0x1010, |
---|
| 182 | ZYZr = 0x0110, |
---|
| 183 | ZXZr = 0x0010, |
---|
| 184 | // |||| |
---|
| 185 | // VVVV |
---|
| 186 | // Legend: ABCD |
---|
| 187 | // A -> Initial Axis (0==x, 1==y, 2==z) |
---|
| 188 | // B -> Parity Even (1==true) |
---|
| 189 | // C -> Initial Repeated (1==true) |
---|
| 190 | // D -> Frame Static (1==true) |
---|
| 191 | // |
---|
| 192 | |
---|
| 193 | Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX | |
---|
| 194 | XZX | XYX | YXY | YZY | ZYZ | ZXZ | |
---|
| 195 | XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr| |
---|
| 196 | XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr, |
---|
| 197 | |
---|
| 198 | Min = 0x0000, |
---|
| 199 | Max = 0x2111, |
---|
| 200 | Default = XYZ |
---|
| 201 | }; |
---|
| 202 | |
---|
| 203 | enum Axis { X = 0, Y = 1, Z = 2 }; |
---|
| 204 | |
---|
| 205 | enum InputLayout { XYZLayout, IJKLayout }; |
---|
| 206 | |
---|
| 207 | //---------------------------------------------------------------- |
---|
| 208 | // Constructors -- all default to ZYX non-relative ala softimage |
---|
| 209 | // (where there is no argument to specify it) |
---|
| 210 | //---------------------------------------------------------------- |
---|
| 211 | |
---|
| 212 | Euler(); |
---|
| 213 | Euler(const Euler&); |
---|
| 214 | Euler(Order p); |
---|
| 215 | Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout); |
---|
| 216 | Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout); |
---|
| 217 | Euler(const Euler<T> &euler, Order newp); |
---|
| 218 | Euler(const Matrix33<T> &, Order o = Default); |
---|
| 219 | Euler(const Matrix44<T> &, Order o = Default); |
---|
| 220 | |
---|
| 221 | //--------------------------------- |
---|
| 222 | // Algebraic functions/ Operators |
---|
| 223 | //--------------------------------- |
---|
| 224 | |
---|
| 225 | const Euler<T>& operator= (const Euler<T>&); |
---|
| 226 | const Euler<T>& operator= (const Vec3<T>&); |
---|
| 227 | |
---|
| 228 | //-------------------------------------------------------- |
---|
| 229 | // Set the euler value |
---|
| 230 | // This does NOT convert the angles, but setXYZVector() |
---|
| 231 | // does reorder the input vector. |
---|
| 232 | //-------------------------------------------------------- |
---|
| 233 | |
---|
| 234 | static bool legal(Order); |
---|
| 235 | |
---|
| 236 | void setXYZVector(const Vec3<T> &); |
---|
| 237 | |
---|
| 238 | Order order() const; |
---|
| 239 | void setOrder(Order); |
---|
| 240 | |
---|
| 241 | void set(Axis initial, |
---|
| 242 | bool relative, |
---|
| 243 | bool parityEven, |
---|
| 244 | bool firstRepeats); |
---|
| 245 | |
---|
| 246 | //--------------------------------------------------------- |
---|
| 247 | // Conversions, toXYZVector() reorders the angles so that |
---|
| 248 | // the X rotation comes first, followed by the Y and Z |
---|
| 249 | // in cases like XYX ordering, the repeated angle will be |
---|
| 250 | // in the "z" component |
---|
| 251 | //--------------------------------------------------------- |
---|
| 252 | |
---|
| 253 | void extract(const Matrix33<T>&); |
---|
| 254 | void extract(const Matrix44<T>&); |
---|
| 255 | void extract(const Quat<T>&); |
---|
| 256 | |
---|
| 257 | Matrix33<T> toMatrix33() const; |
---|
| 258 | Matrix44<T> toMatrix44() const; |
---|
| 259 | Quat<T> toQuat() const; |
---|
| 260 | Vec3<T> toXYZVector() const; |
---|
| 261 | |
---|
| 262 | //--------------------------------------------------- |
---|
| 263 | // Use this function to unpack angles from ijk form |
---|
| 264 | //--------------------------------------------------- |
---|
| 265 | |
---|
| 266 | void angleOrder(int &i, int &j, int &k) const; |
---|
| 267 | |
---|
| 268 | //--------------------------------------------------- |
---|
| 269 | // Use this function to determine mapping from xyz to ijk |
---|
| 270 | // - reshuffles the xyz to match the order |
---|
| 271 | //--------------------------------------------------- |
---|
| 272 | |
---|
| 273 | void angleMapping(int &i, int &j, int &k) const; |
---|
| 274 | |
---|
| 275 | //---------------------------------------------------------------------- |
---|
| 276 | // |
---|
| 277 | // Utility methods for getting continuous rotations. None of these |
---|
| 278 | // methods change the orientation given by its inputs (or at least |
---|
| 279 | // that is the intent). |
---|
| 280 | // |
---|
| 281 | // angleMod() converts an angle to its equivalent in [-PI, PI] |
---|
| 282 | // |
---|
| 283 | // simpleXYZRotation() adjusts xyzRot so that its components differ |
---|
| 284 | // from targetXyzRot by no more than +-PI |
---|
| 285 | // |
---|
| 286 | // nearestRotation() adjusts xyzRot so that its components differ |
---|
| 287 | // from targetXyzRot by as little as possible. |
---|
| 288 | // Note that xyz here really means ijk, because |
---|
| 289 | // the order must be provided. |
---|
| 290 | // |
---|
| 291 | // makeNear() adjusts "this" Euler so that its components differ |
---|
| 292 | // from target by as little as possible. This method |
---|
| 293 | // might not make sense for Eulers with different order |
---|
| 294 | // and it probably doesn't work for repeated axis and |
---|
| 295 | // relative orderings (TODO). |
---|
| 296 | // |
---|
| 297 | //----------------------------------------------------------------------- |
---|
| 298 | |
---|
| 299 | static float angleMod (T angle); |
---|
| 300 | static void simpleXYZRotation (Vec3<T> &xyzRot, |
---|
| 301 | const Vec3<T> &targetXyzRot); |
---|
| 302 | static void nearestRotation (Vec3<T> &xyzRot, |
---|
| 303 | const Vec3<T> &targetXyzRot, |
---|
| 304 | Order order = XYZ); |
---|
| 305 | |
---|
| 306 | void makeNear (const Euler<T> &target); |
---|
| 307 | |
---|
| 308 | bool frameStatic() const { return _frameStatic; } |
---|
| 309 | bool initialRepeated() const { return _initialRepeated; } |
---|
| 310 | bool parityEven() const { return _parityEven; } |
---|
| 311 | Axis initialAxis() const { return _initialAxis; } |
---|
| 312 | |
---|
| 313 | protected: |
---|
| 314 | |
---|
| 315 | bool _frameStatic : 1; // relative or static rotations |
---|
| 316 | bool _initialRepeated : 1; // init axis repeated as last |
---|
| 317 | bool _parityEven : 1; // "parity of axis permutation" |
---|
| 318 | #ifdef PLATFORM_WINDOWS |
---|
| 319 | Axis _initialAxis ; // First axis of rotation |
---|
| 320 | #else |
---|
| 321 | Axis _initialAxis : 2; // First axis of rotation |
---|
| 322 | #endif |
---|
| 323 | }; |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | //-------------------- |
---|
| 327 | // Convenient typedefs |
---|
| 328 | //-------------------- |
---|
| 329 | |
---|
| 330 | typedef Euler<float> Eulerf; |
---|
| 331 | typedef Euler<double> Eulerd; |
---|
| 332 | |
---|
| 333 | |
---|
| 334 | //--------------- |
---|
| 335 | // Implementation |
---|
| 336 | //--------------- |
---|
| 337 | |
---|
| 338 | template<class T> |
---|
| 339 | inline void |
---|
| 340 | Euler<T>::angleOrder(int &i, int &j, int &k) const |
---|
| 341 | { |
---|
| 342 | i = _initialAxis; |
---|
| 343 | j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2); |
---|
| 344 | k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3; |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | template<class T> |
---|
| 348 | inline void |
---|
| 349 | Euler<T>::angleMapping(int &i, int &j, int &k) const |
---|
| 350 | { |
---|
| 351 | int m[3]; |
---|
| 352 | |
---|
| 353 | m[_initialAxis] = 0; |
---|
| 354 | m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2; |
---|
| 355 | m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1; |
---|
| 356 | i = m[0]; |
---|
| 357 | j = m[1]; |
---|
| 358 | k = m[2]; |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | template<class T> |
---|
| 362 | inline void |
---|
| 363 | Euler<T>::setXYZVector(const Vec3<T> &v) |
---|
| 364 | { |
---|
| 365 | int i,j,k; |
---|
| 366 | angleMapping(i,j,k); |
---|
| 367 | (*this)[i] = v.x; |
---|
| 368 | (*this)[j] = v.y; |
---|
| 369 | (*this)[k] = v.z; |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | template<class T> |
---|
| 373 | inline Vec3<T> |
---|
| 374 | Euler<T>::toXYZVector() const |
---|
| 375 | { |
---|
| 376 | int i,j,k; |
---|
| 377 | angleMapping(i,j,k); |
---|
| 378 | return Vec3<T>((*this)[i],(*this)[j],(*this)[k]); |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | template<class T> |
---|
| 383 | Euler<T>::Euler() : |
---|
| 384 | Vec3<T>(0,0,0), |
---|
| 385 | _frameStatic(true), |
---|
| 386 | _initialRepeated(false), |
---|
| 387 | _parityEven(true), |
---|
| 388 | _initialAxis(X) |
---|
| 389 | {} |
---|
| 390 | |
---|
| 391 | template<class T> |
---|
| 392 | Euler<T>::Euler(typename Euler<T>::Order p) : |
---|
| 393 | Vec3<T>(0,0,0), |
---|
| 394 | _frameStatic(true), |
---|
| 395 | _initialRepeated(false), |
---|
| 396 | _parityEven(true), |
---|
| 397 | _initialAxis(X) |
---|
| 398 | { |
---|
| 399 | setOrder(p); |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | template<class T> |
---|
| 403 | inline Euler<T>::Euler( const Vec3<T> &v, |
---|
| 404 | typename Euler<T>::Order p, |
---|
| 405 | typename Euler<T>::InputLayout l ) |
---|
| 406 | { |
---|
| 407 | setOrder(p); |
---|
| 408 | if ( l == XYZLayout ) setXYZVector(v); |
---|
| 409 | else { x = v.x; y = v.y; z = v.z; } |
---|
| 410 | } |
---|
| 411 | |
---|
| 412 | template<class T> |
---|
| 413 | inline Euler<T>::Euler(const Euler<T> &euler) |
---|
| 414 | { |
---|
| 415 | operator=(euler); |
---|
| 416 | } |
---|
| 417 | |
---|
| 418 | template<class T> |
---|
| 419 | inline Euler<T>::Euler(const Euler<T> &euler,Order p) |
---|
| 420 | { |
---|
| 421 | setOrder(p); |
---|
| 422 | Matrix33<T> M = euler.toMatrix33(); |
---|
| 423 | extract(M); |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | template<class T> |
---|
| 427 | inline Euler<T>::Euler( T xi, T yi, T zi, |
---|
| 428 | typename Euler<T>::Order p, |
---|
| 429 | typename Euler<T>::InputLayout l) |
---|
| 430 | { |
---|
| 431 | setOrder(p); |
---|
| 432 | if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi)); |
---|
| 433 | else { x = xi; y = yi; z = zi; } |
---|
| 434 | } |
---|
| 435 | |
---|
| 436 | template<class T> |
---|
| 437 | inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p ) |
---|
| 438 | { |
---|
| 439 | setOrder(p); |
---|
| 440 | extract(M); |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | template<class T> |
---|
| 444 | inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p ) |
---|
| 445 | { |
---|
| 446 | setOrder(p); |
---|
| 447 | extract(M); |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | template<class T> |
---|
| 451 | inline void Euler<T>::extract(const Quat<T> &q) |
---|
| 452 | { |
---|
| 453 | extract(q.toMatrix33()); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | template<class T> |
---|
| 457 | void Euler<T>::extract(const Matrix33<T> &M) |
---|
| 458 | { |
---|
| 459 | int i,j,k; |
---|
| 460 | angleOrder(i,j,k); |
---|
| 461 | |
---|
| 462 | if (_initialRepeated) |
---|
| 463 | { |
---|
| 464 | // |
---|
| 465 | // Extract the first angle, x. |
---|
| 466 | // |
---|
| 467 | |
---|
| 468 | x = Math<T>::atan2 (M[j][i], M[k][i]); |
---|
| 469 | |
---|
| 470 | // |
---|
| 471 | // Remove the x rotation from M, so that the remaining |
---|
| 472 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 473 | // cannot occur. |
---|
| 474 | // |
---|
| 475 | |
---|
| 476 | Vec3<T> r (0, 0, 0); |
---|
| 477 | r[i] = (_parityEven? -x: x); |
---|
| 478 | |
---|
| 479 | Matrix44<T> N; |
---|
| 480 | N.rotate (r); |
---|
| 481 | |
---|
| 482 | N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
---|
| 483 | M[1][0], M[1][1], M[1][2], 0, |
---|
| 484 | M[2][0], M[2][1], M[2][2], 0, |
---|
| 485 | 0, 0, 0, 1); |
---|
| 486 | // |
---|
| 487 | // Extract the other two angles, y and z, from N. |
---|
| 488 | // |
---|
| 489 | |
---|
| 490 | T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
---|
| 491 | y = Math<T>::atan2 (sy, N[i][i]); |
---|
| 492 | z = Math<T>::atan2 (N[j][k], N[j][j]); |
---|
| 493 | } |
---|
| 494 | else |
---|
| 495 | { |
---|
| 496 | // |
---|
| 497 | // Extract the first angle, x. |
---|
| 498 | // |
---|
| 499 | |
---|
| 500 | x = Math<T>::atan2 (M[j][k], M[k][k]); |
---|
| 501 | |
---|
| 502 | // |
---|
| 503 | // Remove the x rotation from M, so that the remaining |
---|
| 504 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 505 | // cannot occur. |
---|
| 506 | // |
---|
| 507 | |
---|
| 508 | Vec3<T> r (0, 0, 0); |
---|
| 509 | r[i] = (_parityEven? -x: x); |
---|
| 510 | |
---|
| 511 | Matrix44<T> N; |
---|
| 512 | N.rotate (r); |
---|
| 513 | |
---|
| 514 | N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
---|
| 515 | M[1][0], M[1][1], M[1][2], 0, |
---|
| 516 | M[2][0], M[2][1], M[2][2], 0, |
---|
| 517 | 0, 0, 0, 1); |
---|
| 518 | // |
---|
| 519 | // Extract the other two angles, y and z, from N. |
---|
| 520 | // |
---|
| 521 | |
---|
| 522 | T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
---|
| 523 | y = Math<T>::atan2 (-N[i][k], cy); |
---|
| 524 | z = Math<T>::atan2 (-N[j][i], N[j][j]); |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | if (!_parityEven) |
---|
| 528 | *this *= -1; |
---|
| 529 | |
---|
| 530 | if (!_frameStatic) |
---|
| 531 | { |
---|
| 532 | T t = x; |
---|
| 533 | x = z; |
---|
| 534 | z = t; |
---|
| 535 | } |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | template<class T> |
---|
| 539 | void Euler<T>::extract(const Matrix44<T> &M) |
---|
| 540 | { |
---|
| 541 | int i,j,k; |
---|
| 542 | angleOrder(i,j,k); |
---|
| 543 | |
---|
| 544 | if (_initialRepeated) |
---|
| 545 | { |
---|
| 546 | // |
---|
| 547 | // Extract the first angle, x. |
---|
| 548 | // |
---|
| 549 | |
---|
| 550 | x = Math<T>::atan2 (M[j][i], M[k][i]); |
---|
| 551 | |
---|
| 552 | // |
---|
| 553 | // Remove the x rotation from M, so that the remaining |
---|
| 554 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 555 | // cannot occur. |
---|
| 556 | // |
---|
| 557 | |
---|
| 558 | Vec3<T> r (0, 0, 0); |
---|
| 559 | r[i] = (_parityEven? -x: x); |
---|
| 560 | |
---|
| 561 | Matrix44<T> N; |
---|
| 562 | N.rotate (r); |
---|
| 563 | N = N * M; |
---|
| 564 | |
---|
| 565 | // |
---|
| 566 | // Extract the other two angles, y and z, from N. |
---|
| 567 | // |
---|
| 568 | |
---|
| 569 | T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
---|
| 570 | y = Math<T>::atan2 (sy, N[i][i]); |
---|
| 571 | z = Math<T>::atan2 (N[j][k], N[j][j]); |
---|
| 572 | } |
---|
| 573 | else |
---|
| 574 | { |
---|
| 575 | // |
---|
| 576 | // Extract the first angle, x. |
---|
| 577 | // |
---|
| 578 | |
---|
| 579 | x = Math<T>::atan2 (M[j][k], M[k][k]); |
---|
| 580 | |
---|
| 581 | // |
---|
| 582 | // Remove the x rotation from M, so that the remaining |
---|
| 583 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 584 | // cannot occur. |
---|
| 585 | // |
---|
| 586 | |
---|
| 587 | Vec3<T> r (0, 0, 0); |
---|
| 588 | r[i] = (_parityEven? -x: x); |
---|
| 589 | |
---|
| 590 | Matrix44<T> N; |
---|
| 591 | N.rotate (r); |
---|
| 592 | N = N * M; |
---|
| 593 | |
---|
| 594 | // |
---|
| 595 | // Extract the other two angles, y and z, from N. |
---|
| 596 | // |
---|
| 597 | |
---|
| 598 | T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
---|
| 599 | y = Math<T>::atan2 (-N[i][k], cy); |
---|
| 600 | z = Math<T>::atan2 (-N[j][i], N[j][j]); |
---|
| 601 | } |
---|
| 602 | |
---|
| 603 | if (!_parityEven) |
---|
| 604 | *this *= -1; |
---|
| 605 | |
---|
| 606 | if (!_frameStatic) |
---|
| 607 | { |
---|
| 608 | T t = x; |
---|
| 609 | x = z; |
---|
| 610 | z = t; |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | template<class T> |
---|
| 615 | Matrix33<T> Euler<T>::toMatrix33() const |
---|
| 616 | { |
---|
| 617 | int i,j,k; |
---|
| 618 | angleOrder(i,j,k); |
---|
| 619 | |
---|
| 620 | Vec3<T> angles; |
---|
| 621 | |
---|
| 622 | if ( _frameStatic ) angles = (*this); |
---|
| 623 | else angles = Vec3<T>(z,y,x); |
---|
| 624 | |
---|
| 625 | if ( !_parityEven ) angles *= -1.0; |
---|
| 626 | |
---|
| 627 | T ci = Math<T>::cos(angles.x); |
---|
| 628 | T cj = Math<T>::cos(angles.y); |
---|
| 629 | T ch = Math<T>::cos(angles.z); |
---|
| 630 | T si = Math<T>::sin(angles.x); |
---|
| 631 | T sj = Math<T>::sin(angles.y); |
---|
| 632 | T sh = Math<T>::sin(angles.z); |
---|
| 633 | |
---|
| 634 | T cc = ci*ch; |
---|
| 635 | T cs = ci*sh; |
---|
| 636 | T sc = si*ch; |
---|
| 637 | T ss = si*sh; |
---|
| 638 | |
---|
| 639 | Matrix33<T> M; |
---|
| 640 | |
---|
| 641 | if ( _initialRepeated ) |
---|
| 642 | { |
---|
| 643 | M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
---|
| 644 | M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
---|
| 645 | M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
---|
| 646 | } |
---|
| 647 | else |
---|
| 648 | { |
---|
| 649 | M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
---|
| 650 | M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
---|
| 651 | M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | return M; |
---|
| 655 | } |
---|
| 656 | |
---|
| 657 | template<class T> |
---|
| 658 | Matrix44<T> Euler<T>::toMatrix44() const |
---|
| 659 | { |
---|
| 660 | int i,j,k; |
---|
| 661 | angleOrder(i,j,k); |
---|
| 662 | |
---|
| 663 | Vec3<T> angles; |
---|
| 664 | |
---|
| 665 | if ( _frameStatic ) angles = (*this); |
---|
| 666 | else angles = Vec3<T>(z,y,x); |
---|
| 667 | |
---|
| 668 | if ( !_parityEven ) angles *= -1.0; |
---|
| 669 | |
---|
| 670 | T ci = Math<T>::cos(angles.x); |
---|
| 671 | T cj = Math<T>::cos(angles.y); |
---|
| 672 | T ch = Math<T>::cos(angles.z); |
---|
| 673 | T si = Math<T>::sin(angles.x); |
---|
| 674 | T sj = Math<T>::sin(angles.y); |
---|
| 675 | T sh = Math<T>::sin(angles.z); |
---|
| 676 | |
---|
| 677 | T cc = ci*ch; |
---|
| 678 | T cs = ci*sh; |
---|
| 679 | T sc = si*ch; |
---|
| 680 | T ss = si*sh; |
---|
| 681 | |
---|
| 682 | Matrix44<T> M; |
---|
| 683 | |
---|
| 684 | if ( _initialRepeated ) |
---|
| 685 | { |
---|
| 686 | M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
---|
| 687 | M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
---|
| 688 | M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
---|
| 689 | } |
---|
| 690 | else |
---|
| 691 | { |
---|
| 692 | M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
---|
| 693 | M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
---|
| 694 | M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
---|
| 695 | } |
---|
| 696 | |
---|
| 697 | return M; |
---|
| 698 | } |
---|
| 699 | |
---|
| 700 | template<class T> |
---|
| 701 | Quat<T> Euler<T>::toQuat() const |
---|
| 702 | { |
---|
| 703 | Vec3<T> angles; |
---|
| 704 | int i,j,k; |
---|
| 705 | angleOrder(i,j,k); |
---|
| 706 | |
---|
| 707 | if ( _frameStatic ) angles = (*this); |
---|
| 708 | else angles = Vec3<T>(z,y,x); |
---|
| 709 | |
---|
| 710 | if ( !_parityEven ) angles.y = -angles.y; |
---|
| 711 | |
---|
| 712 | T ti = angles.x*0.5; |
---|
| 713 | T tj = angles.y*0.5; |
---|
| 714 | T th = angles.z*0.5; |
---|
| 715 | T ci = Math<T>::cos(ti); |
---|
| 716 | T cj = Math<T>::cos(tj); |
---|
| 717 | T ch = Math<T>::cos(th); |
---|
| 718 | T si = Math<T>::sin(ti); |
---|
| 719 | T sj = Math<T>::sin(tj); |
---|
| 720 | T sh = Math<T>::sin(th); |
---|
| 721 | T cc = ci*ch; |
---|
| 722 | T cs = ci*sh; |
---|
| 723 | T sc = si*ch; |
---|
| 724 | T ss = si*sh; |
---|
| 725 | |
---|
| 726 | T parity = _parityEven ? 1.0 : -1.0; |
---|
| 727 | |
---|
| 728 | Quat<T> q; |
---|
| 729 | Vec3<T> a; |
---|
| 730 | |
---|
| 731 | if ( _initialRepeated ) |
---|
| 732 | { |
---|
| 733 | a[i] = cj*(cs + sc); |
---|
| 734 | a[j] = sj*(cc + ss) * parity, |
---|
| 735 | a[k] = sj*(cs - sc); |
---|
| 736 | q.r = cj*(cc - ss); |
---|
| 737 | } |
---|
| 738 | else |
---|
| 739 | { |
---|
| 740 | a[i] = cj*sc - sj*cs, |
---|
| 741 | a[j] = (cj*ss + sj*cc) * parity, |
---|
| 742 | a[k] = cj*cs - sj*sc; |
---|
| 743 | q.r = cj*cc + sj*ss; |
---|
| 744 | } |
---|
| 745 | |
---|
| 746 | q.v = a; |
---|
| 747 | |
---|
| 748 | return q; |
---|
| 749 | } |
---|
| 750 | |
---|
| 751 | template<class T> |
---|
| 752 | inline bool |
---|
| 753 | Euler<T>::legal(typename Euler<T>::Order order) |
---|
| 754 | { |
---|
| 755 | return (order & ~Legal) ? false : true; |
---|
| 756 | } |
---|
| 757 | |
---|
| 758 | template<class T> |
---|
| 759 | typename Euler<T>::Order |
---|
| 760 | Euler<T>::order() const |
---|
| 761 | { |
---|
| 762 | int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0)); |
---|
| 763 | |
---|
| 764 | if (_parityEven) foo |= 0x0100; |
---|
| 765 | if (_initialRepeated) foo |= 0x0010; |
---|
| 766 | if (_frameStatic) foo++; |
---|
| 767 | |
---|
| 768 | return (Order)foo; |
---|
| 769 | } |
---|
| 770 | |
---|
| 771 | template<class T> |
---|
| 772 | inline void Euler<T>::setOrder(typename Euler<T>::Order p) |
---|
| 773 | { |
---|
| 774 | set( p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis |
---|
| 775 | !(p & 0x1), // static? |
---|
| 776 | !!(p & 0x100), // permutation even? |
---|
| 777 | !!(p & 0x10)); // initial repeats? |
---|
| 778 | } |
---|
| 779 | |
---|
| 780 | template<class T> |
---|
| 781 | void Euler<T>::set(typename Euler<T>::Axis axis, |
---|
| 782 | bool relative, |
---|
| 783 | bool parityEven, |
---|
| 784 | bool firstRepeats) |
---|
| 785 | { |
---|
| 786 | _initialAxis = axis; |
---|
| 787 | _frameStatic = !relative; |
---|
| 788 | _parityEven = parityEven; |
---|
| 789 | _initialRepeated = firstRepeats; |
---|
| 790 | } |
---|
| 791 | |
---|
| 792 | template<class T> |
---|
| 793 | const Euler<T>& Euler<T>::operator= (const Euler<T> &euler) |
---|
| 794 | { |
---|
| 795 | x = euler.x; |
---|
| 796 | y = euler.y; |
---|
| 797 | z = euler.z; |
---|
| 798 | _initialAxis = euler._initialAxis; |
---|
| 799 | _frameStatic = euler._frameStatic; |
---|
| 800 | _parityEven = euler._parityEven; |
---|
| 801 | _initialRepeated = euler._initialRepeated; |
---|
| 802 | return *this; |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | template<class T> |
---|
| 806 | const Euler<T>& Euler<T>::operator= (const Vec3<T> &v) |
---|
| 807 | { |
---|
| 808 | x = v.x; |
---|
| 809 | y = v.y; |
---|
| 810 | z = v.z; |
---|
| 811 | return *this; |
---|
| 812 | } |
---|
| 813 | |
---|
| 814 | template<class T> |
---|
| 815 | std::ostream& operator << (std::ostream &o, const Euler<T> &euler) |
---|
| 816 | { |
---|
| 817 | char a[3] = { 'X', 'Y', 'Z' }; |
---|
| 818 | |
---|
| 819 | const char* r = euler.frameStatic() ? "" : "r"; |
---|
| 820 | int i,j,k; |
---|
| 821 | euler.angleOrder(i,j,k); |
---|
| 822 | |
---|
| 823 | if ( euler.initialRepeated() ) k = i; |
---|
| 824 | |
---|
| 825 | return o << "(" |
---|
| 826 | << euler.x << " " |
---|
| 827 | << euler.y << " " |
---|
| 828 | << euler.z << " " |
---|
| 829 | << a[i] << a[j] << a[k] << r << ")"; |
---|
| 830 | } |
---|
| 831 | |
---|
| 832 | template <class T> |
---|
| 833 | float |
---|
| 834 | Euler<T>::angleMod (T angle) |
---|
| 835 | { |
---|
| 836 | angle = fmod(T (angle), T (2 * M_PI)); |
---|
| 837 | |
---|
| 838 | if (angle < -M_PI) angle += 2 * M_PI; |
---|
| 839 | if (angle > +M_PI) angle -= 2 * M_PI; |
---|
| 840 | |
---|
| 841 | return angle; |
---|
| 842 | } |
---|
| 843 | |
---|
| 844 | template <class T> |
---|
| 845 | void |
---|
| 846 | Euler<T>::simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot) |
---|
| 847 | { |
---|
| 848 | Vec3<T> d = xyzRot - targetXyzRot; |
---|
| 849 | xyzRot[0] = targetXyzRot[0] + angleMod(d[0]); |
---|
| 850 | xyzRot[1] = targetXyzRot[1] + angleMod(d[1]); |
---|
| 851 | xyzRot[2] = targetXyzRot[2] + angleMod(d[2]); |
---|
| 852 | } |
---|
| 853 | |
---|
| 854 | template <class T> |
---|
| 855 | void |
---|
| 856 | Euler<T>::nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot, |
---|
| 857 | Order order) |
---|
| 858 | { |
---|
| 859 | int i,j,k; |
---|
| 860 | Euler<T> e (0,0,0, order); |
---|
| 861 | e.angleOrder(i,j,k); |
---|
| 862 | |
---|
| 863 | simpleXYZRotation(xyzRot, targetXyzRot); |
---|
| 864 | |
---|
| 865 | Vec3<T> otherXyzRot; |
---|
| 866 | otherXyzRot[i] = M_PI+xyzRot[i]; |
---|
| 867 | otherXyzRot[j] = M_PI-xyzRot[j]; |
---|
| 868 | otherXyzRot[k] = M_PI+xyzRot[k]; |
---|
| 869 | |
---|
| 870 | simpleXYZRotation(otherXyzRot, targetXyzRot); |
---|
| 871 | |
---|
| 872 | Vec3<T> d = xyzRot - targetXyzRot; |
---|
| 873 | Vec3<T> od = otherXyzRot - targetXyzRot; |
---|
| 874 | T dMag = d.dot(d); |
---|
| 875 | T odMag = od.dot(od); |
---|
| 876 | |
---|
| 877 | if (odMag < dMag) |
---|
| 878 | { |
---|
| 879 | xyzRot = otherXyzRot; |
---|
| 880 | } |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | template <class T> |
---|
| 884 | void |
---|
| 885 | Euler<T>::makeNear (const Euler<T> &target) |
---|
| 886 | { |
---|
| 887 | Vec3<T> xyzRot = toXYZVector(); |
---|
| 888 | Euler<T> targetSameOrder = Euler<T>(target, order()); |
---|
| 889 | Vec3<T> targetXyz = targetSameOrder.toXYZVector(); |
---|
| 890 | |
---|
| 891 | nearestRotation(xyzRot, targetXyz, order()); |
---|
| 892 | |
---|
| 893 | setXYZVector(xyzRot); |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
| 897 | #pragma warning(default:4244) |
---|
| 898 | #endif |
---|
| 899 | |
---|
| 900 | } // namespace Imath |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | #endif |
---|