1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHEULER_H |
---|
38 | #define INCLUDED_IMATHEULER_H |
---|
39 | |
---|
40 | //---------------------------------------------------------------------- |
---|
41 | // |
---|
42 | // template class Euler<T> |
---|
43 | // |
---|
44 | // This class represents euler angle orientations. The class |
---|
45 | // inherits from Vec3 to it can be freely cast. The additional |
---|
46 | // information is the euler priorities rep. This class is |
---|
47 | // essentially a rip off of Ken Shoemake's GemsIV code. It has |
---|
48 | // been modified minimally to make it more understandable, but |
---|
49 | // hardly enough to make it easy to grok completely. |
---|
50 | // |
---|
51 | // There are 24 possible combonations of Euler angle |
---|
52 | // representations of which 12 are common in CG and you will |
---|
53 | // probably only use 6 of these which in this scheme are the |
---|
54 | // non-relative-non-repeating types. |
---|
55 | // |
---|
56 | // The representations can be partitioned according to two |
---|
57 | // criteria: |
---|
58 | // |
---|
59 | // 1) Are the angles measured relative to a set of fixed axis |
---|
60 | // or relative to each other (the latter being what happens |
---|
61 | // when rotation matrices are multiplied together and is |
---|
62 | // almost ubiquitous in the cg community) |
---|
63 | // |
---|
64 | // 2) Is one of the rotations repeated (ala XYX rotation) |
---|
65 | // |
---|
66 | // When you construct a given representation from scratch you |
---|
67 | // must order the angles according to their priorities. So, the |
---|
68 | // easiest is a softimage or aerospace (yaw/pitch/roll) ordering |
---|
69 | // of ZYX. |
---|
70 | // |
---|
71 | // float x_rot = 1; |
---|
72 | // float y_rot = 2; |
---|
73 | // float z_rot = 3; |
---|
74 | // |
---|
75 | // Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX); |
---|
76 | // -or- |
---|
77 | // Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX ); |
---|
78 | // |
---|
79 | // If instead, the order was YXZ for instance you would have to |
---|
80 | // do this: |
---|
81 | // |
---|
82 | // float x_rot = 1; |
---|
83 | // float y_rot = 2; |
---|
84 | // float z_rot = 3; |
---|
85 | // |
---|
86 | // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
---|
87 | // -or- |
---|
88 | // Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ ); |
---|
89 | // |
---|
90 | // Notice how the order you put the angles into the three slots |
---|
91 | // should correspond to the enum (YXZ) ordering. The input angle |
---|
92 | // vector is called the "ijk" vector -- not an "xyz" vector. The |
---|
93 | // ijk vector order is the same as the enum. If you treat the |
---|
94 | // Euler<> as a Vec<> (which it inherts from) you will find the |
---|
95 | // angles are ordered in the same way, i.e.: |
---|
96 | // |
---|
97 | // V3f v = angles; |
---|
98 | // // v.x == y_rot, v.y == x_rot, v.z == z_rot |
---|
99 | // |
---|
100 | // If you just want the x, y, and z angles stored in a vector in |
---|
101 | // that order, you can do this: |
---|
102 | // |
---|
103 | // V3f v = angles.toXYZVector() |
---|
104 | // // v.x == x_rot, v.y == y_rot, v.z == z_rot |
---|
105 | // |
---|
106 | // If you want to set the Euler with an XYZVector use the |
---|
107 | // optional layout argument: |
---|
108 | // |
---|
109 | // Eulerf angles(x_rot, y_rot, z_rot, |
---|
110 | // Eulerf::YXZ, |
---|
111 | // Eulerf::XYZLayout); |
---|
112 | // |
---|
113 | // This is the same as: |
---|
114 | // |
---|
115 | // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); |
---|
116 | // |
---|
117 | // Note that this won't do anything intelligent if you have a |
---|
118 | // repeated axis in the euler angles (e.g. XYX) |
---|
119 | // |
---|
120 | // If you need to use the "relative" versions of these, you will |
---|
121 | // need to use the "r" enums. |
---|
122 | // |
---|
123 | // The units of the rotation angles are assumed to be radians. |
---|
124 | // |
---|
125 | //---------------------------------------------------------------------- |
---|
126 | |
---|
127 | |
---|
128 | #include <ImathMath.h> |
---|
129 | #include <ImathVec.h> |
---|
130 | #include <ImathQuat.h> |
---|
131 | #include <ImathMatrix.h> |
---|
132 | #include <ImathLimits.h> |
---|
133 | #include <iostream> |
---|
134 | |
---|
135 | namespace Imath { |
---|
136 | |
---|
137 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
138 | // Disable MS VC++ warnings about conversion from double to float |
---|
139 | #pragma warning(disable:4244) |
---|
140 | #endif |
---|
141 | |
---|
142 | template <class T> |
---|
143 | class Euler : public Vec3<T> |
---|
144 | { |
---|
145 | public: |
---|
146 | |
---|
147 | using Vec3<T>::x; |
---|
148 | using Vec3<T>::y; |
---|
149 | using Vec3<T>::z; |
---|
150 | |
---|
151 | enum Order |
---|
152 | { |
---|
153 | // |
---|
154 | // All 24 possible orderings |
---|
155 | // |
---|
156 | |
---|
157 | XYZ = 0x0101, // "usual" orderings |
---|
158 | XZY = 0x0001, |
---|
159 | YZX = 0x1101, |
---|
160 | YXZ = 0x1001, |
---|
161 | ZXY = 0x2101, |
---|
162 | ZYX = 0x2001, |
---|
163 | |
---|
164 | XZX = 0x0011, // first axis repeated |
---|
165 | XYX = 0x0111, |
---|
166 | YXY = 0x1011, |
---|
167 | YZY = 0x1111, |
---|
168 | ZYZ = 0x2011, |
---|
169 | ZXZ = 0x2111, |
---|
170 | |
---|
171 | XYZr = 0x2000, // relative orderings -- not common |
---|
172 | XZYr = 0x2100, |
---|
173 | YZXr = 0x1000, |
---|
174 | YXZr = 0x1100, |
---|
175 | ZXYr = 0x0000, |
---|
176 | ZYXr = 0x0100, |
---|
177 | |
---|
178 | XZXr = 0x2110, // relative first axis repeated |
---|
179 | XYXr = 0x2010, |
---|
180 | YXYr = 0x1110, |
---|
181 | YZYr = 0x1010, |
---|
182 | ZYZr = 0x0110, |
---|
183 | ZXZr = 0x0010, |
---|
184 | // |||| |
---|
185 | // VVVV |
---|
186 | // Legend: ABCD |
---|
187 | // A -> Initial Axis (0==x, 1==y, 2==z) |
---|
188 | // B -> Parity Even (1==true) |
---|
189 | // C -> Initial Repeated (1==true) |
---|
190 | // D -> Frame Static (1==true) |
---|
191 | // |
---|
192 | |
---|
193 | Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX | |
---|
194 | XZX | XYX | YXY | YZY | ZYZ | ZXZ | |
---|
195 | XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr| |
---|
196 | XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr, |
---|
197 | |
---|
198 | Min = 0x0000, |
---|
199 | Max = 0x2111, |
---|
200 | Default = XYZ |
---|
201 | }; |
---|
202 | |
---|
203 | enum Axis { X = 0, Y = 1, Z = 2 }; |
---|
204 | |
---|
205 | enum InputLayout { XYZLayout, IJKLayout }; |
---|
206 | |
---|
207 | //---------------------------------------------------------------- |
---|
208 | // Constructors -- all default to ZYX non-relative ala softimage |
---|
209 | // (where there is no argument to specify it) |
---|
210 | //---------------------------------------------------------------- |
---|
211 | |
---|
212 | Euler(); |
---|
213 | Euler(const Euler&); |
---|
214 | Euler(Order p); |
---|
215 | Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout); |
---|
216 | Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout); |
---|
217 | Euler(const Euler<T> &euler, Order newp); |
---|
218 | Euler(const Matrix33<T> &, Order o = Default); |
---|
219 | Euler(const Matrix44<T> &, Order o = Default); |
---|
220 | |
---|
221 | //--------------------------------- |
---|
222 | // Algebraic functions/ Operators |
---|
223 | //--------------------------------- |
---|
224 | |
---|
225 | const Euler<T>& operator= (const Euler<T>&); |
---|
226 | const Euler<T>& operator= (const Vec3<T>&); |
---|
227 | |
---|
228 | //-------------------------------------------------------- |
---|
229 | // Set the euler value |
---|
230 | // This does NOT convert the angles, but setXYZVector() |
---|
231 | // does reorder the input vector. |
---|
232 | //-------------------------------------------------------- |
---|
233 | |
---|
234 | static bool legal(Order); |
---|
235 | |
---|
236 | void setXYZVector(const Vec3<T> &); |
---|
237 | |
---|
238 | Order order() const; |
---|
239 | void setOrder(Order); |
---|
240 | |
---|
241 | void set(Axis initial, |
---|
242 | bool relative, |
---|
243 | bool parityEven, |
---|
244 | bool firstRepeats); |
---|
245 | |
---|
246 | //--------------------------------------------------------- |
---|
247 | // Conversions, toXYZVector() reorders the angles so that |
---|
248 | // the X rotation comes first, followed by the Y and Z |
---|
249 | // in cases like XYX ordering, the repeated angle will be |
---|
250 | // in the "z" component |
---|
251 | //--------------------------------------------------------- |
---|
252 | |
---|
253 | void extract(const Matrix33<T>&); |
---|
254 | void extract(const Matrix44<T>&); |
---|
255 | void extract(const Quat<T>&); |
---|
256 | |
---|
257 | Matrix33<T> toMatrix33() const; |
---|
258 | Matrix44<T> toMatrix44() const; |
---|
259 | Quat<T> toQuat() const; |
---|
260 | Vec3<T> toXYZVector() const; |
---|
261 | |
---|
262 | //--------------------------------------------------- |
---|
263 | // Use this function to unpack angles from ijk form |
---|
264 | //--------------------------------------------------- |
---|
265 | |
---|
266 | void angleOrder(int &i, int &j, int &k) const; |
---|
267 | |
---|
268 | //--------------------------------------------------- |
---|
269 | // Use this function to determine mapping from xyz to ijk |
---|
270 | // - reshuffles the xyz to match the order |
---|
271 | //--------------------------------------------------- |
---|
272 | |
---|
273 | void angleMapping(int &i, int &j, int &k) const; |
---|
274 | |
---|
275 | //---------------------------------------------------------------------- |
---|
276 | // |
---|
277 | // Utility methods for getting continuous rotations. None of these |
---|
278 | // methods change the orientation given by its inputs (or at least |
---|
279 | // that is the intent). |
---|
280 | // |
---|
281 | // angleMod() converts an angle to its equivalent in [-PI, PI] |
---|
282 | // |
---|
283 | // simpleXYZRotation() adjusts xyzRot so that its components differ |
---|
284 | // from targetXyzRot by no more than +-PI |
---|
285 | // |
---|
286 | // nearestRotation() adjusts xyzRot so that its components differ |
---|
287 | // from targetXyzRot by as little as possible. |
---|
288 | // Note that xyz here really means ijk, because |
---|
289 | // the order must be provided. |
---|
290 | // |
---|
291 | // makeNear() adjusts "this" Euler so that its components differ |
---|
292 | // from target by as little as possible. This method |
---|
293 | // might not make sense for Eulers with different order |
---|
294 | // and it probably doesn't work for repeated axis and |
---|
295 | // relative orderings (TODO). |
---|
296 | // |
---|
297 | //----------------------------------------------------------------------- |
---|
298 | |
---|
299 | static float angleMod (T angle); |
---|
300 | static void simpleXYZRotation (Vec3<T> &xyzRot, |
---|
301 | const Vec3<T> &targetXyzRot); |
---|
302 | static void nearestRotation (Vec3<T> &xyzRot, |
---|
303 | const Vec3<T> &targetXyzRot, |
---|
304 | Order order = XYZ); |
---|
305 | |
---|
306 | void makeNear (const Euler<T> &target); |
---|
307 | |
---|
308 | bool frameStatic() const { return _frameStatic; } |
---|
309 | bool initialRepeated() const { return _initialRepeated; } |
---|
310 | bool parityEven() const { return _parityEven; } |
---|
311 | Axis initialAxis() const { return _initialAxis; } |
---|
312 | |
---|
313 | protected: |
---|
314 | |
---|
315 | bool _frameStatic : 1; // relative or static rotations |
---|
316 | bool _initialRepeated : 1; // init axis repeated as last |
---|
317 | bool _parityEven : 1; // "parity of axis permutation" |
---|
318 | #ifdef PLATFORM_WINDOWS |
---|
319 | Axis _initialAxis ; // First axis of rotation |
---|
320 | #else |
---|
321 | Axis _initialAxis : 2; // First axis of rotation |
---|
322 | #endif |
---|
323 | }; |
---|
324 | |
---|
325 | |
---|
326 | //-------------------- |
---|
327 | // Convenient typedefs |
---|
328 | //-------------------- |
---|
329 | |
---|
330 | typedef Euler<float> Eulerf; |
---|
331 | typedef Euler<double> Eulerd; |
---|
332 | |
---|
333 | |
---|
334 | //--------------- |
---|
335 | // Implementation |
---|
336 | //--------------- |
---|
337 | |
---|
338 | template<class T> |
---|
339 | inline void |
---|
340 | Euler<T>::angleOrder(int &i, int &j, int &k) const |
---|
341 | { |
---|
342 | i = _initialAxis; |
---|
343 | j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2); |
---|
344 | k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3; |
---|
345 | } |
---|
346 | |
---|
347 | template<class T> |
---|
348 | inline void |
---|
349 | Euler<T>::angleMapping(int &i, int &j, int &k) const |
---|
350 | { |
---|
351 | int m[3]; |
---|
352 | |
---|
353 | m[_initialAxis] = 0; |
---|
354 | m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2; |
---|
355 | m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1; |
---|
356 | i = m[0]; |
---|
357 | j = m[1]; |
---|
358 | k = m[2]; |
---|
359 | } |
---|
360 | |
---|
361 | template<class T> |
---|
362 | inline void |
---|
363 | Euler<T>::setXYZVector(const Vec3<T> &v) |
---|
364 | { |
---|
365 | int i,j,k; |
---|
366 | angleMapping(i,j,k); |
---|
367 | (*this)[i] = v.x; |
---|
368 | (*this)[j] = v.y; |
---|
369 | (*this)[k] = v.z; |
---|
370 | } |
---|
371 | |
---|
372 | template<class T> |
---|
373 | inline Vec3<T> |
---|
374 | Euler<T>::toXYZVector() const |
---|
375 | { |
---|
376 | int i,j,k; |
---|
377 | angleMapping(i,j,k); |
---|
378 | return Vec3<T>((*this)[i],(*this)[j],(*this)[k]); |
---|
379 | } |
---|
380 | |
---|
381 | |
---|
382 | template<class T> |
---|
383 | Euler<T>::Euler() : |
---|
384 | Vec3<T>(0,0,0), |
---|
385 | _frameStatic(true), |
---|
386 | _initialRepeated(false), |
---|
387 | _parityEven(true), |
---|
388 | _initialAxis(X) |
---|
389 | {} |
---|
390 | |
---|
391 | template<class T> |
---|
392 | Euler<T>::Euler(typename Euler<T>::Order p) : |
---|
393 | Vec3<T>(0,0,0), |
---|
394 | _frameStatic(true), |
---|
395 | _initialRepeated(false), |
---|
396 | _parityEven(true), |
---|
397 | _initialAxis(X) |
---|
398 | { |
---|
399 | setOrder(p); |
---|
400 | } |
---|
401 | |
---|
402 | template<class T> |
---|
403 | inline Euler<T>::Euler( const Vec3<T> &v, |
---|
404 | typename Euler<T>::Order p, |
---|
405 | typename Euler<T>::InputLayout l ) |
---|
406 | { |
---|
407 | setOrder(p); |
---|
408 | if ( l == XYZLayout ) setXYZVector(v); |
---|
409 | else { x = v.x; y = v.y; z = v.z; } |
---|
410 | } |
---|
411 | |
---|
412 | template<class T> |
---|
413 | inline Euler<T>::Euler(const Euler<T> &euler) |
---|
414 | { |
---|
415 | operator=(euler); |
---|
416 | } |
---|
417 | |
---|
418 | template<class T> |
---|
419 | inline Euler<T>::Euler(const Euler<T> &euler,Order p) |
---|
420 | { |
---|
421 | setOrder(p); |
---|
422 | Matrix33<T> M = euler.toMatrix33(); |
---|
423 | extract(M); |
---|
424 | } |
---|
425 | |
---|
426 | template<class T> |
---|
427 | inline Euler<T>::Euler( T xi, T yi, T zi, |
---|
428 | typename Euler<T>::Order p, |
---|
429 | typename Euler<T>::InputLayout l) |
---|
430 | { |
---|
431 | setOrder(p); |
---|
432 | if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi)); |
---|
433 | else { x = xi; y = yi; z = zi; } |
---|
434 | } |
---|
435 | |
---|
436 | template<class T> |
---|
437 | inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p ) |
---|
438 | { |
---|
439 | setOrder(p); |
---|
440 | extract(M); |
---|
441 | } |
---|
442 | |
---|
443 | template<class T> |
---|
444 | inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p ) |
---|
445 | { |
---|
446 | setOrder(p); |
---|
447 | extract(M); |
---|
448 | } |
---|
449 | |
---|
450 | template<class T> |
---|
451 | inline void Euler<T>::extract(const Quat<T> &q) |
---|
452 | { |
---|
453 | extract(q.toMatrix33()); |
---|
454 | } |
---|
455 | |
---|
456 | template<class T> |
---|
457 | void Euler<T>::extract(const Matrix33<T> &M) |
---|
458 | { |
---|
459 | int i,j,k; |
---|
460 | angleOrder(i,j,k); |
---|
461 | |
---|
462 | if (_initialRepeated) |
---|
463 | { |
---|
464 | // |
---|
465 | // Extract the first angle, x. |
---|
466 | // |
---|
467 | |
---|
468 | x = Math<T>::atan2 (M[j][i], M[k][i]); |
---|
469 | |
---|
470 | // |
---|
471 | // Remove the x rotation from M, so that the remaining |
---|
472 | // rotation, N, is only around two axes, and gimbal lock |
---|
473 | // cannot occur. |
---|
474 | // |
---|
475 | |
---|
476 | Vec3<T> r (0, 0, 0); |
---|
477 | r[i] = (_parityEven? -x: x); |
---|
478 | |
---|
479 | Matrix44<T> N; |
---|
480 | N.rotate (r); |
---|
481 | |
---|
482 | N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
---|
483 | M[1][0], M[1][1], M[1][2], 0, |
---|
484 | M[2][0], M[2][1], M[2][2], 0, |
---|
485 | 0, 0, 0, 1); |
---|
486 | // |
---|
487 | // Extract the other two angles, y and z, from N. |
---|
488 | // |
---|
489 | |
---|
490 | T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
---|
491 | y = Math<T>::atan2 (sy, N[i][i]); |
---|
492 | z = Math<T>::atan2 (N[j][k], N[j][j]); |
---|
493 | } |
---|
494 | else |
---|
495 | { |
---|
496 | // |
---|
497 | // Extract the first angle, x. |
---|
498 | // |
---|
499 | |
---|
500 | x = Math<T>::atan2 (M[j][k], M[k][k]); |
---|
501 | |
---|
502 | // |
---|
503 | // Remove the x rotation from M, so that the remaining |
---|
504 | // rotation, N, is only around two axes, and gimbal lock |
---|
505 | // cannot occur. |
---|
506 | // |
---|
507 | |
---|
508 | Vec3<T> r (0, 0, 0); |
---|
509 | r[i] = (_parityEven? -x: x); |
---|
510 | |
---|
511 | Matrix44<T> N; |
---|
512 | N.rotate (r); |
---|
513 | |
---|
514 | N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, |
---|
515 | M[1][0], M[1][1], M[1][2], 0, |
---|
516 | M[2][0], M[2][1], M[2][2], 0, |
---|
517 | 0, 0, 0, 1); |
---|
518 | // |
---|
519 | // Extract the other two angles, y and z, from N. |
---|
520 | // |
---|
521 | |
---|
522 | T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
---|
523 | y = Math<T>::atan2 (-N[i][k], cy); |
---|
524 | z = Math<T>::atan2 (-N[j][i], N[j][j]); |
---|
525 | } |
---|
526 | |
---|
527 | if (!_parityEven) |
---|
528 | *this *= -1; |
---|
529 | |
---|
530 | if (!_frameStatic) |
---|
531 | { |
---|
532 | T t = x; |
---|
533 | x = z; |
---|
534 | z = t; |
---|
535 | } |
---|
536 | } |
---|
537 | |
---|
538 | template<class T> |
---|
539 | void Euler<T>::extract(const Matrix44<T> &M) |
---|
540 | { |
---|
541 | int i,j,k; |
---|
542 | angleOrder(i,j,k); |
---|
543 | |
---|
544 | if (_initialRepeated) |
---|
545 | { |
---|
546 | // |
---|
547 | // Extract the first angle, x. |
---|
548 | // |
---|
549 | |
---|
550 | x = Math<T>::atan2 (M[j][i], M[k][i]); |
---|
551 | |
---|
552 | // |
---|
553 | // Remove the x rotation from M, so that the remaining |
---|
554 | // rotation, N, is only around two axes, and gimbal lock |
---|
555 | // cannot occur. |
---|
556 | // |
---|
557 | |
---|
558 | Vec3<T> r (0, 0, 0); |
---|
559 | r[i] = (_parityEven? -x: x); |
---|
560 | |
---|
561 | Matrix44<T> N; |
---|
562 | N.rotate (r); |
---|
563 | N = N * M; |
---|
564 | |
---|
565 | // |
---|
566 | // Extract the other two angles, y and z, from N. |
---|
567 | // |
---|
568 | |
---|
569 | T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); |
---|
570 | y = Math<T>::atan2 (sy, N[i][i]); |
---|
571 | z = Math<T>::atan2 (N[j][k], N[j][j]); |
---|
572 | } |
---|
573 | else |
---|
574 | { |
---|
575 | // |
---|
576 | // Extract the first angle, x. |
---|
577 | // |
---|
578 | |
---|
579 | x = Math<T>::atan2 (M[j][k], M[k][k]); |
---|
580 | |
---|
581 | // |
---|
582 | // Remove the x rotation from M, so that the remaining |
---|
583 | // rotation, N, is only around two axes, and gimbal lock |
---|
584 | // cannot occur. |
---|
585 | // |
---|
586 | |
---|
587 | Vec3<T> r (0, 0, 0); |
---|
588 | r[i] = (_parityEven? -x: x); |
---|
589 | |
---|
590 | Matrix44<T> N; |
---|
591 | N.rotate (r); |
---|
592 | N = N * M; |
---|
593 | |
---|
594 | // |
---|
595 | // Extract the other two angles, y and z, from N. |
---|
596 | // |
---|
597 | |
---|
598 | T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); |
---|
599 | y = Math<T>::atan2 (-N[i][k], cy); |
---|
600 | z = Math<T>::atan2 (-N[j][i], N[j][j]); |
---|
601 | } |
---|
602 | |
---|
603 | if (!_parityEven) |
---|
604 | *this *= -1; |
---|
605 | |
---|
606 | if (!_frameStatic) |
---|
607 | { |
---|
608 | T t = x; |
---|
609 | x = z; |
---|
610 | z = t; |
---|
611 | } |
---|
612 | } |
---|
613 | |
---|
614 | template<class T> |
---|
615 | Matrix33<T> Euler<T>::toMatrix33() const |
---|
616 | { |
---|
617 | int i,j,k; |
---|
618 | angleOrder(i,j,k); |
---|
619 | |
---|
620 | Vec3<T> angles; |
---|
621 | |
---|
622 | if ( _frameStatic ) angles = (*this); |
---|
623 | else angles = Vec3<T>(z,y,x); |
---|
624 | |
---|
625 | if ( !_parityEven ) angles *= -1.0; |
---|
626 | |
---|
627 | T ci = Math<T>::cos(angles.x); |
---|
628 | T cj = Math<T>::cos(angles.y); |
---|
629 | T ch = Math<T>::cos(angles.z); |
---|
630 | T si = Math<T>::sin(angles.x); |
---|
631 | T sj = Math<T>::sin(angles.y); |
---|
632 | T sh = Math<T>::sin(angles.z); |
---|
633 | |
---|
634 | T cc = ci*ch; |
---|
635 | T cs = ci*sh; |
---|
636 | T sc = si*ch; |
---|
637 | T ss = si*sh; |
---|
638 | |
---|
639 | Matrix33<T> M; |
---|
640 | |
---|
641 | if ( _initialRepeated ) |
---|
642 | { |
---|
643 | M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
---|
644 | M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
---|
645 | M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
---|
646 | } |
---|
647 | else |
---|
648 | { |
---|
649 | M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
---|
650 | M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
---|
651 | M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
---|
652 | } |
---|
653 | |
---|
654 | return M; |
---|
655 | } |
---|
656 | |
---|
657 | template<class T> |
---|
658 | Matrix44<T> Euler<T>::toMatrix44() const |
---|
659 | { |
---|
660 | int i,j,k; |
---|
661 | angleOrder(i,j,k); |
---|
662 | |
---|
663 | Vec3<T> angles; |
---|
664 | |
---|
665 | if ( _frameStatic ) angles = (*this); |
---|
666 | else angles = Vec3<T>(z,y,x); |
---|
667 | |
---|
668 | if ( !_parityEven ) angles *= -1.0; |
---|
669 | |
---|
670 | T ci = Math<T>::cos(angles.x); |
---|
671 | T cj = Math<T>::cos(angles.y); |
---|
672 | T ch = Math<T>::cos(angles.z); |
---|
673 | T si = Math<T>::sin(angles.x); |
---|
674 | T sj = Math<T>::sin(angles.y); |
---|
675 | T sh = Math<T>::sin(angles.z); |
---|
676 | |
---|
677 | T cc = ci*ch; |
---|
678 | T cs = ci*sh; |
---|
679 | T sc = si*ch; |
---|
680 | T ss = si*sh; |
---|
681 | |
---|
682 | Matrix44<T> M; |
---|
683 | |
---|
684 | if ( _initialRepeated ) |
---|
685 | { |
---|
686 | M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; |
---|
687 | M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; |
---|
688 | M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; |
---|
689 | } |
---|
690 | else |
---|
691 | { |
---|
692 | M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; |
---|
693 | M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; |
---|
694 | M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; |
---|
695 | } |
---|
696 | |
---|
697 | return M; |
---|
698 | } |
---|
699 | |
---|
700 | template<class T> |
---|
701 | Quat<T> Euler<T>::toQuat() const |
---|
702 | { |
---|
703 | Vec3<T> angles; |
---|
704 | int i,j,k; |
---|
705 | angleOrder(i,j,k); |
---|
706 | |
---|
707 | if ( _frameStatic ) angles = (*this); |
---|
708 | else angles = Vec3<T>(z,y,x); |
---|
709 | |
---|
710 | if ( !_parityEven ) angles.y = -angles.y; |
---|
711 | |
---|
712 | T ti = angles.x*0.5; |
---|
713 | T tj = angles.y*0.5; |
---|
714 | T th = angles.z*0.5; |
---|
715 | T ci = Math<T>::cos(ti); |
---|
716 | T cj = Math<T>::cos(tj); |
---|
717 | T ch = Math<T>::cos(th); |
---|
718 | T si = Math<T>::sin(ti); |
---|
719 | T sj = Math<T>::sin(tj); |
---|
720 | T sh = Math<T>::sin(th); |
---|
721 | T cc = ci*ch; |
---|
722 | T cs = ci*sh; |
---|
723 | T sc = si*ch; |
---|
724 | T ss = si*sh; |
---|
725 | |
---|
726 | T parity = _parityEven ? 1.0 : -1.0; |
---|
727 | |
---|
728 | Quat<T> q; |
---|
729 | Vec3<T> a; |
---|
730 | |
---|
731 | if ( _initialRepeated ) |
---|
732 | { |
---|
733 | a[i] = cj*(cs + sc); |
---|
734 | a[j] = sj*(cc + ss) * parity, |
---|
735 | a[k] = sj*(cs - sc); |
---|
736 | q.r = cj*(cc - ss); |
---|
737 | } |
---|
738 | else |
---|
739 | { |
---|
740 | a[i] = cj*sc - sj*cs, |
---|
741 | a[j] = (cj*ss + sj*cc) * parity, |
---|
742 | a[k] = cj*cs - sj*sc; |
---|
743 | q.r = cj*cc + sj*ss; |
---|
744 | } |
---|
745 | |
---|
746 | q.v = a; |
---|
747 | |
---|
748 | return q; |
---|
749 | } |
---|
750 | |
---|
751 | template<class T> |
---|
752 | inline bool |
---|
753 | Euler<T>::legal(typename Euler<T>::Order order) |
---|
754 | { |
---|
755 | return (order & ~Legal) ? false : true; |
---|
756 | } |
---|
757 | |
---|
758 | template<class T> |
---|
759 | typename Euler<T>::Order |
---|
760 | Euler<T>::order() const |
---|
761 | { |
---|
762 | int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0)); |
---|
763 | |
---|
764 | if (_parityEven) foo |= 0x0100; |
---|
765 | if (_initialRepeated) foo |= 0x0010; |
---|
766 | if (_frameStatic) foo++; |
---|
767 | |
---|
768 | return (Order)foo; |
---|
769 | } |
---|
770 | |
---|
771 | template<class T> |
---|
772 | inline void Euler<T>::setOrder(typename Euler<T>::Order p) |
---|
773 | { |
---|
774 | set( p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis |
---|
775 | !(p & 0x1), // static? |
---|
776 | !!(p & 0x100), // permutation even? |
---|
777 | !!(p & 0x10)); // initial repeats? |
---|
778 | } |
---|
779 | |
---|
780 | template<class T> |
---|
781 | void Euler<T>::set(typename Euler<T>::Axis axis, |
---|
782 | bool relative, |
---|
783 | bool parityEven, |
---|
784 | bool firstRepeats) |
---|
785 | { |
---|
786 | _initialAxis = axis; |
---|
787 | _frameStatic = !relative; |
---|
788 | _parityEven = parityEven; |
---|
789 | _initialRepeated = firstRepeats; |
---|
790 | } |
---|
791 | |
---|
792 | template<class T> |
---|
793 | const Euler<T>& Euler<T>::operator= (const Euler<T> &euler) |
---|
794 | { |
---|
795 | x = euler.x; |
---|
796 | y = euler.y; |
---|
797 | z = euler.z; |
---|
798 | _initialAxis = euler._initialAxis; |
---|
799 | _frameStatic = euler._frameStatic; |
---|
800 | _parityEven = euler._parityEven; |
---|
801 | _initialRepeated = euler._initialRepeated; |
---|
802 | return *this; |
---|
803 | } |
---|
804 | |
---|
805 | template<class T> |
---|
806 | const Euler<T>& Euler<T>::operator= (const Vec3<T> &v) |
---|
807 | { |
---|
808 | x = v.x; |
---|
809 | y = v.y; |
---|
810 | z = v.z; |
---|
811 | return *this; |
---|
812 | } |
---|
813 | |
---|
814 | template<class T> |
---|
815 | std::ostream& operator << (std::ostream &o, const Euler<T> &euler) |
---|
816 | { |
---|
817 | char a[3] = { 'X', 'Y', 'Z' }; |
---|
818 | |
---|
819 | const char* r = euler.frameStatic() ? "" : "r"; |
---|
820 | int i,j,k; |
---|
821 | euler.angleOrder(i,j,k); |
---|
822 | |
---|
823 | if ( euler.initialRepeated() ) k = i; |
---|
824 | |
---|
825 | return o << "(" |
---|
826 | << euler.x << " " |
---|
827 | << euler.y << " " |
---|
828 | << euler.z << " " |
---|
829 | << a[i] << a[j] << a[k] << r << ")"; |
---|
830 | } |
---|
831 | |
---|
832 | template <class T> |
---|
833 | float |
---|
834 | Euler<T>::angleMod (T angle) |
---|
835 | { |
---|
836 | angle = fmod(T (angle), T (2 * M_PI)); |
---|
837 | |
---|
838 | if (angle < -M_PI) angle += 2 * M_PI; |
---|
839 | if (angle > +M_PI) angle -= 2 * M_PI; |
---|
840 | |
---|
841 | return angle; |
---|
842 | } |
---|
843 | |
---|
844 | template <class T> |
---|
845 | void |
---|
846 | Euler<T>::simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot) |
---|
847 | { |
---|
848 | Vec3<T> d = xyzRot - targetXyzRot; |
---|
849 | xyzRot[0] = targetXyzRot[0] + angleMod(d[0]); |
---|
850 | xyzRot[1] = targetXyzRot[1] + angleMod(d[1]); |
---|
851 | xyzRot[2] = targetXyzRot[2] + angleMod(d[2]); |
---|
852 | } |
---|
853 | |
---|
854 | template <class T> |
---|
855 | void |
---|
856 | Euler<T>::nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot, |
---|
857 | Order order) |
---|
858 | { |
---|
859 | int i,j,k; |
---|
860 | Euler<T> e (0,0,0, order); |
---|
861 | e.angleOrder(i,j,k); |
---|
862 | |
---|
863 | simpleXYZRotation(xyzRot, targetXyzRot); |
---|
864 | |
---|
865 | Vec3<T> otherXyzRot; |
---|
866 | otherXyzRot[i] = M_PI+xyzRot[i]; |
---|
867 | otherXyzRot[j] = M_PI-xyzRot[j]; |
---|
868 | otherXyzRot[k] = M_PI+xyzRot[k]; |
---|
869 | |
---|
870 | simpleXYZRotation(otherXyzRot, targetXyzRot); |
---|
871 | |
---|
872 | Vec3<T> d = xyzRot - targetXyzRot; |
---|
873 | Vec3<T> od = otherXyzRot - targetXyzRot; |
---|
874 | T dMag = d.dot(d); |
---|
875 | T odMag = od.dot(od); |
---|
876 | |
---|
877 | if (odMag < dMag) |
---|
878 | { |
---|
879 | xyzRot = otherXyzRot; |
---|
880 | } |
---|
881 | } |
---|
882 | |
---|
883 | template <class T> |
---|
884 | void |
---|
885 | Euler<T>::makeNear (const Euler<T> &target) |
---|
886 | { |
---|
887 | Vec3<T> xyzRot = toXYZVector(); |
---|
888 | Euler<T> targetSameOrder = Euler<T>(target, order()); |
---|
889 | Vec3<T> targetXyz = targetSameOrder.toXYZVector(); |
---|
890 | |
---|
891 | nearestRotation(xyzRot, targetXyz, order()); |
---|
892 | |
---|
893 | setXYZVector(xyzRot); |
---|
894 | } |
---|
895 | |
---|
896 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
897 | #pragma warning(default:4244) |
---|
898 | #endif |
---|
899 | |
---|
900 | } // namespace Imath |
---|
901 | |
---|
902 | |
---|
903 | #endif |
---|