[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHFRAME_H |
---|
| 38 | #define INCLUDED_IMATHFRAME_H |
---|
| 39 | |
---|
| 40 | namespace Imath { |
---|
| 41 | |
---|
| 42 | template<class T> class Vec3; |
---|
| 43 | template<class T> class Matrix44; |
---|
| 44 | |
---|
| 45 | // |
---|
| 46 | // These methods compute a set of reference frames, defined by their |
---|
| 47 | // transformation matrix, along a curve. It is designed so that the |
---|
| 48 | // array of points and the array of matrices used to fetch these routines |
---|
| 49 | // don't need to be ordered as the curve. |
---|
| 50 | // |
---|
| 51 | // A typical usage would be : |
---|
| 52 | // |
---|
| 53 | // m[0] = Imath::firstFrame( p[0], p[1], p[2] ); |
---|
| 54 | // for( int i = 1; i < n - 1; i++ ) |
---|
| 55 | // { |
---|
| 56 | // m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] ); |
---|
| 57 | // } |
---|
| 58 | // m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] ); |
---|
| 59 | // |
---|
| 60 | // See Graphics Gems I for the underlying algorithm. |
---|
| 61 | // |
---|
| 62 | |
---|
| 63 | template<class T> Matrix44<T> firstFrame( const Vec3<T>&, // First point |
---|
| 64 | const Vec3<T>&, // Second point |
---|
| 65 | const Vec3<T>& ); // Third point |
---|
| 66 | |
---|
| 67 | template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix |
---|
| 68 | const Vec3<T>&, // Previous point |
---|
| 69 | const Vec3<T>&, // Current point |
---|
| 70 | Vec3<T>&, // Previous tangent |
---|
| 71 | Vec3<T>& ); // Current tangent |
---|
| 72 | |
---|
| 73 | template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix |
---|
| 74 | const Vec3<T>&, // Previous point |
---|
| 75 | const Vec3<T>& ); // Last point |
---|
| 76 | |
---|
| 77 | // |
---|
| 78 | // firstFrame - Compute the first reference frame along a curve. |
---|
| 79 | // |
---|
| 80 | // This function returns the transformation matrix to the reference frame |
---|
| 81 | // defined by the three points 'pi', 'pj' and 'pk'. Note that if the two |
---|
| 82 | // vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will |
---|
| 83 | // be choosen. |
---|
| 84 | // |
---|
| 85 | // Throw 'NullVecExc' if 'pi' and 'pj' are equals. |
---|
| 86 | // |
---|
| 87 | |
---|
| 88 | template<class T> Matrix44<T> firstFrame |
---|
| 89 | ( |
---|
| 90 | const Vec3<T>& pi, // First point |
---|
| 91 | const Vec3<T>& pj, // Second point |
---|
| 92 | const Vec3<T>& pk ) // Third point |
---|
| 93 | { |
---|
| 94 | Vec3<T> t = pj - pi; t.normalizeExc(); |
---|
| 95 | |
---|
| 96 | Vec3<T> n = t.cross( pk - pi ); n.normalize(); |
---|
| 97 | if( n.length() == 0.0f ) |
---|
| 98 | { |
---|
| 99 | int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1; |
---|
| 100 | if( fabs( t[2] ) < fabs( t[i] )) i = 2; |
---|
| 101 | |
---|
| 102 | Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0; |
---|
| 103 | n = t.cross( v ); n.normalize(); |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | Vec3<T> b = t.cross( n ); |
---|
| 107 | |
---|
| 108 | Matrix44<T> M; |
---|
| 109 | |
---|
| 110 | M[0][0] = t[0]; M[0][1] = t[1]; M[0][2] = t[2]; M[0][3] = 0.0, |
---|
| 111 | M[1][0] = n[0]; M[1][1] = n[1]; M[1][2] = n[2]; M[1][3] = 0.0, |
---|
| 112 | M[2][0] = b[0]; M[2][1] = b[1]; M[2][2] = b[2]; M[2][3] = 0.0, |
---|
| 113 | M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0; |
---|
| 114 | |
---|
| 115 | return M; |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | // |
---|
| 119 | // nextFrame - Compute the next reference frame along a curve. |
---|
| 120 | // |
---|
| 121 | // This function returns the transformation matrix to the next reference |
---|
| 122 | // frame defined by the previously computed transformation matrix and the |
---|
| 123 | // new point and tangent vector along the curve. |
---|
| 124 | // |
---|
| 125 | |
---|
| 126 | template<class T> Matrix44<T> nextFrame |
---|
| 127 | ( |
---|
| 128 | const Matrix44<T>& Mi, // Previous matrix |
---|
| 129 | const Vec3<T>& pi, // Previous point |
---|
| 130 | const Vec3<T>& pj, // Current point |
---|
| 131 | Vec3<T>& ti, // Previous tangent vector |
---|
| 132 | Vec3<T>& tj ) // Current tangent vector |
---|
| 133 | { |
---|
| 134 | Vec3<T> a(0.0, 0.0, 0.0); // Rotation axis. |
---|
| 135 | T r = 0.0; // Rotation angle. |
---|
| 136 | |
---|
| 137 | if( ti.length() != 0.0 && tj.length() != 0.0 ) |
---|
| 138 | { |
---|
| 139 | ti.normalize(); tj.normalize(); |
---|
| 140 | T dot = ti.dot( tj ); |
---|
| 141 | |
---|
| 142 | // |
---|
| 143 | // This is *really* necessary : |
---|
| 144 | // |
---|
| 145 | |
---|
| 146 | if( dot > 1.0 ) dot = 1.0; |
---|
| 147 | else if( dot < -1.0 ) dot = -1.0; |
---|
| 148 | |
---|
| 149 | r = acosf( dot ); |
---|
| 150 | a = ti.cross( tj ); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | if( a.length() != 0.0 && r != 0.0 ) |
---|
| 154 | { |
---|
| 155 | Matrix44<T> R; R.setAxisAngle( a, r ); |
---|
| 156 | Matrix44<T> Tj; Tj.translate( pj ); |
---|
| 157 | Matrix44<T> Ti; Ti.translate( -pi ); |
---|
| 158 | |
---|
| 159 | return Mi * Ti * R * Tj; |
---|
| 160 | } |
---|
| 161 | else |
---|
| 162 | { |
---|
| 163 | Matrix44<T> Tr; Tr.translate( pj - pi ); |
---|
| 164 | |
---|
| 165 | return Mi * Tr; |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | // |
---|
| 170 | // lastFrame - Compute the last reference frame along a curve. |
---|
| 171 | // |
---|
| 172 | // This function returns the transformation matrix to the last reference |
---|
| 173 | // frame defined by the previously computed transformation matrix and the |
---|
| 174 | // last point along the curve. |
---|
| 175 | // |
---|
| 176 | |
---|
| 177 | template<class T> Matrix44<T> lastFrame |
---|
| 178 | ( |
---|
| 179 | const Matrix44<T>& Mi, // Previous matrix |
---|
| 180 | const Vec3<T>& pi, // Previous point |
---|
| 181 | const Vec3<T>& pj ) // Last point |
---|
| 182 | { |
---|
| 183 | Matrix44<T> Tr; Tr.translate( pj - pi ); |
---|
| 184 | |
---|
| 185 | return Mi * Tr; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | } // namespace Imath |
---|
| 189 | |
---|
| 190 | #endif |
---|