1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHFRAME_H |
---|
38 | #define INCLUDED_IMATHFRAME_H |
---|
39 | |
---|
40 | namespace Imath { |
---|
41 | |
---|
42 | template<class T> class Vec3; |
---|
43 | template<class T> class Matrix44; |
---|
44 | |
---|
45 | // |
---|
46 | // These methods compute a set of reference frames, defined by their |
---|
47 | // transformation matrix, along a curve. It is designed so that the |
---|
48 | // array of points and the array of matrices used to fetch these routines |
---|
49 | // don't need to be ordered as the curve. |
---|
50 | // |
---|
51 | // A typical usage would be : |
---|
52 | // |
---|
53 | // m[0] = Imath::firstFrame( p[0], p[1], p[2] ); |
---|
54 | // for( int i = 1; i < n - 1; i++ ) |
---|
55 | // { |
---|
56 | // m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] ); |
---|
57 | // } |
---|
58 | // m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] ); |
---|
59 | // |
---|
60 | // See Graphics Gems I for the underlying algorithm. |
---|
61 | // |
---|
62 | |
---|
63 | template<class T> Matrix44<T> firstFrame( const Vec3<T>&, // First point |
---|
64 | const Vec3<T>&, // Second point |
---|
65 | const Vec3<T>& ); // Third point |
---|
66 | |
---|
67 | template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix |
---|
68 | const Vec3<T>&, // Previous point |
---|
69 | const Vec3<T>&, // Current point |
---|
70 | Vec3<T>&, // Previous tangent |
---|
71 | Vec3<T>& ); // Current tangent |
---|
72 | |
---|
73 | template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix |
---|
74 | const Vec3<T>&, // Previous point |
---|
75 | const Vec3<T>& ); // Last point |
---|
76 | |
---|
77 | // |
---|
78 | // firstFrame - Compute the first reference frame along a curve. |
---|
79 | // |
---|
80 | // This function returns the transformation matrix to the reference frame |
---|
81 | // defined by the three points 'pi', 'pj' and 'pk'. Note that if the two |
---|
82 | // vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will |
---|
83 | // be choosen. |
---|
84 | // |
---|
85 | // Throw 'NullVecExc' if 'pi' and 'pj' are equals. |
---|
86 | // |
---|
87 | |
---|
88 | template<class T> Matrix44<T> firstFrame |
---|
89 | ( |
---|
90 | const Vec3<T>& pi, // First point |
---|
91 | const Vec3<T>& pj, // Second point |
---|
92 | const Vec3<T>& pk ) // Third point |
---|
93 | { |
---|
94 | Vec3<T> t = pj - pi; t.normalizeExc(); |
---|
95 | |
---|
96 | Vec3<T> n = t.cross( pk - pi ); n.normalize(); |
---|
97 | if( n.length() == 0.0f ) |
---|
98 | { |
---|
99 | int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1; |
---|
100 | if( fabs( t[2] ) < fabs( t[i] )) i = 2; |
---|
101 | |
---|
102 | Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0; |
---|
103 | n = t.cross( v ); n.normalize(); |
---|
104 | } |
---|
105 | |
---|
106 | Vec3<T> b = t.cross( n ); |
---|
107 | |
---|
108 | Matrix44<T> M; |
---|
109 | |
---|
110 | M[0][0] = t[0]; M[0][1] = t[1]; M[0][2] = t[2]; M[0][3] = 0.0, |
---|
111 | M[1][0] = n[0]; M[1][1] = n[1]; M[1][2] = n[2]; M[1][3] = 0.0, |
---|
112 | M[2][0] = b[0]; M[2][1] = b[1]; M[2][2] = b[2]; M[2][3] = 0.0, |
---|
113 | M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0; |
---|
114 | |
---|
115 | return M; |
---|
116 | } |
---|
117 | |
---|
118 | // |
---|
119 | // nextFrame - Compute the next reference frame along a curve. |
---|
120 | // |
---|
121 | // This function returns the transformation matrix to the next reference |
---|
122 | // frame defined by the previously computed transformation matrix and the |
---|
123 | // new point and tangent vector along the curve. |
---|
124 | // |
---|
125 | |
---|
126 | template<class T> Matrix44<T> nextFrame |
---|
127 | ( |
---|
128 | const Matrix44<T>& Mi, // Previous matrix |
---|
129 | const Vec3<T>& pi, // Previous point |
---|
130 | const Vec3<T>& pj, // Current point |
---|
131 | Vec3<T>& ti, // Previous tangent vector |
---|
132 | Vec3<T>& tj ) // Current tangent vector |
---|
133 | { |
---|
134 | Vec3<T> a(0.0, 0.0, 0.0); // Rotation axis. |
---|
135 | T r = 0.0; // Rotation angle. |
---|
136 | |
---|
137 | if( ti.length() != 0.0 && tj.length() != 0.0 ) |
---|
138 | { |
---|
139 | ti.normalize(); tj.normalize(); |
---|
140 | T dot = ti.dot( tj ); |
---|
141 | |
---|
142 | // |
---|
143 | // This is *really* necessary : |
---|
144 | // |
---|
145 | |
---|
146 | if( dot > 1.0 ) dot = 1.0; |
---|
147 | else if( dot < -1.0 ) dot = -1.0; |
---|
148 | |
---|
149 | r = acosf( dot ); |
---|
150 | a = ti.cross( tj ); |
---|
151 | } |
---|
152 | |
---|
153 | if( a.length() != 0.0 && r != 0.0 ) |
---|
154 | { |
---|
155 | Matrix44<T> R; R.setAxisAngle( a, r ); |
---|
156 | Matrix44<T> Tj; Tj.translate( pj ); |
---|
157 | Matrix44<T> Ti; Ti.translate( -pi ); |
---|
158 | |
---|
159 | return Mi * Ti * R * Tj; |
---|
160 | } |
---|
161 | else |
---|
162 | { |
---|
163 | Matrix44<T> Tr; Tr.translate( pj - pi ); |
---|
164 | |
---|
165 | return Mi * Tr; |
---|
166 | } |
---|
167 | } |
---|
168 | |
---|
169 | // |
---|
170 | // lastFrame - Compute the last reference frame along a curve. |
---|
171 | // |
---|
172 | // This function returns the transformation matrix to the last reference |
---|
173 | // frame defined by the previously computed transformation matrix and the |
---|
174 | // last point along the curve. |
---|
175 | // |
---|
176 | |
---|
177 | template<class T> Matrix44<T> lastFrame |
---|
178 | ( |
---|
179 | const Matrix44<T>& Mi, // Previous matrix |
---|
180 | const Vec3<T>& pi, // Previous point |
---|
181 | const Vec3<T>& pj ) // Last point |
---|
182 | { |
---|
183 | Matrix44<T> Tr; Tr.translate( pj - pi ); |
---|
184 | |
---|
185 | return Mi * Tr; |
---|
186 | } |
---|
187 | |
---|
188 | } // namespace Imath |
---|
189 | |
---|
190 | #endif |
---|