1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHFUN_H |
---|
38 | #define INCLUDED_IMATHFUN_H |
---|
39 | |
---|
40 | //----------------------------------------------------------------------------- |
---|
41 | // |
---|
42 | // Miscellaneous utility functions |
---|
43 | // |
---|
44 | //----------------------------------------------------------------------------- |
---|
45 | |
---|
46 | #include <ImathLimits.h> |
---|
47 | |
---|
48 | namespace Imath { |
---|
49 | |
---|
50 | template <class T> |
---|
51 | inline T |
---|
52 | abs (T a) |
---|
53 | { |
---|
54 | return (a > 0) ? a : -a; |
---|
55 | } |
---|
56 | |
---|
57 | |
---|
58 | template <class T> |
---|
59 | inline int |
---|
60 | sign (T a) |
---|
61 | { |
---|
62 | return (a > 0)? 1 : ((a < 0) ? -1 : 0); |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | template <class T, class Q> |
---|
67 | inline T |
---|
68 | lerp (T a, T b, Q t) |
---|
69 | { |
---|
70 | return (T) (a + (b - a) * t); |
---|
71 | } |
---|
72 | |
---|
73 | |
---|
74 | template <class T, class Q> |
---|
75 | inline T |
---|
76 | ulerp (T a, T b, Q t) |
---|
77 | { |
---|
78 | return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t)); |
---|
79 | } |
---|
80 | |
---|
81 | |
---|
82 | template <class T> |
---|
83 | inline T |
---|
84 | lerpfactor(T m, T a, T b) |
---|
85 | { |
---|
86 | // |
---|
87 | // Return how far m is between a and b, that is return t such that |
---|
88 | // if: |
---|
89 | // t = lerpfactor(m, a, b); |
---|
90 | // then: |
---|
91 | // m = lerp(a, b, t); |
---|
92 | // |
---|
93 | // If a==b, return 0. |
---|
94 | // |
---|
95 | |
---|
96 | T d = b - a; |
---|
97 | T n = m - a; |
---|
98 | |
---|
99 | if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d)) |
---|
100 | return n / d; |
---|
101 | |
---|
102 | return T(0); |
---|
103 | } |
---|
104 | |
---|
105 | |
---|
106 | template <class T> |
---|
107 | inline T |
---|
108 | clamp (T a, T l, T h) |
---|
109 | { |
---|
110 | return (a < l)? l : ((a > h)? h : a); |
---|
111 | } |
---|
112 | |
---|
113 | |
---|
114 | template <class T> |
---|
115 | inline int |
---|
116 | cmp (T a, T b) |
---|
117 | { |
---|
118 | return Imath::sign (a - b); |
---|
119 | } |
---|
120 | |
---|
121 | |
---|
122 | template <class T> |
---|
123 | inline int |
---|
124 | cmpt (T a, T b, T t) |
---|
125 | { |
---|
126 | return (Imath::abs (a - b) <= t)? 0 : cmp (a, b); |
---|
127 | } |
---|
128 | |
---|
129 | |
---|
130 | template <class T> |
---|
131 | inline bool |
---|
132 | iszero (T a, T t) |
---|
133 | { |
---|
134 | return (Imath::abs (a) <= t) ? 1 : 0; |
---|
135 | } |
---|
136 | |
---|
137 | |
---|
138 | template <class T1, class T2, class T3> |
---|
139 | inline bool |
---|
140 | equal (T1 a, T2 b, T3 t) |
---|
141 | { |
---|
142 | return Imath::abs (a - b) <= t; |
---|
143 | } |
---|
144 | |
---|
145 | template <class T> |
---|
146 | inline int |
---|
147 | floor (T x) |
---|
148 | { |
---|
149 | return (x >= 0)? int (x): -(int (-x) + (-x > int (-x))); |
---|
150 | } |
---|
151 | |
---|
152 | |
---|
153 | template <class T> |
---|
154 | inline int |
---|
155 | ceil (T x) |
---|
156 | { |
---|
157 | return -floor (-x); |
---|
158 | } |
---|
159 | |
---|
160 | template <class T> |
---|
161 | inline int |
---|
162 | trunc (T x) |
---|
163 | { |
---|
164 | return (x >= 0) ? int(x) : -int(-x); |
---|
165 | } |
---|
166 | |
---|
167 | |
---|
168 | // |
---|
169 | // Integer division and remainder where the |
---|
170 | // remainder of x/y has the same sign as x: |
---|
171 | // |
---|
172 | // divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y)) |
---|
173 | // mods(x,y) == x - y * divs(x,y) |
---|
174 | // |
---|
175 | |
---|
176 | inline int |
---|
177 | divs (int x, int y) |
---|
178 | { |
---|
179 | return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
---|
180 | ((y >= 0)? -(-x / y): (-x / -y)); |
---|
181 | } |
---|
182 | |
---|
183 | |
---|
184 | inline int |
---|
185 | mods (int x, int y) |
---|
186 | { |
---|
187 | return (x >= 0)? ((y >= 0)? ( x % y): ( x % -y)): |
---|
188 | ((y >= 0)? -(-x % y): -(-x % -y)); |
---|
189 | } |
---|
190 | |
---|
191 | |
---|
192 | // |
---|
193 | // Integer division and remainder where the |
---|
194 | // remainder of x/y is always positive: |
---|
195 | // |
---|
196 | // divp(x,y) == floor (double(x) / double (y)) |
---|
197 | // modp(x,y) == x - y * divp(x,y) |
---|
198 | // |
---|
199 | |
---|
200 | inline int |
---|
201 | divp (int x, int y) |
---|
202 | { |
---|
203 | return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): |
---|
204 | ((y >= 0)? -((y-1-x) / y): ((-y-1-x) / -y)); |
---|
205 | } |
---|
206 | |
---|
207 | |
---|
208 | inline int |
---|
209 | modp (int x, int y) |
---|
210 | { |
---|
211 | return x - y * divp (x, y); |
---|
212 | } |
---|
213 | |
---|
214 | //---------------------------------------------------------- |
---|
215 | // Successor and predecessor for floating-point numbers: |
---|
216 | // |
---|
217 | // succf(f) returns float(f+e), where e is the smallest |
---|
218 | // positive number such that float(f+e) != f. |
---|
219 | // |
---|
220 | // predf(f) returns float(f-e), where e is the smallest |
---|
221 | // positive number such that float(f-e) != f. |
---|
222 | // |
---|
223 | // succd(d) returns double(d+e), where e is the smallest |
---|
224 | // positive number such that double(d+e) != d. |
---|
225 | // |
---|
226 | // predd(d) returns double(d-e), where e is the smallest |
---|
227 | // positive number such that double(d-e) != d. |
---|
228 | // |
---|
229 | // Exceptions: If the input value is an infinity or a nan, |
---|
230 | // succf(), predf(), succd(), and predd() all |
---|
231 | // return the input value without changing it. |
---|
232 | // |
---|
233 | //---------------------------------------------------------- |
---|
234 | |
---|
235 | float succf (float f); |
---|
236 | float predf (float f); |
---|
237 | |
---|
238 | double succd (double d); |
---|
239 | double predd (double d); |
---|
240 | |
---|
241 | // |
---|
242 | // Return true if the number is not a NaN or Infinity. |
---|
243 | // |
---|
244 | |
---|
245 | inline bool |
---|
246 | finitef (float f) |
---|
247 | { |
---|
248 | union {float f; int i;} u; |
---|
249 | u.f = f; |
---|
250 | |
---|
251 | return (u.i & 0x7f800000) != 0x7f800000; |
---|
252 | } |
---|
253 | |
---|
254 | inline bool |
---|
255 | finited (double d) |
---|
256 | { |
---|
257 | #if ULONG_MAX == 18446744073709551615LU |
---|
258 | typedef long unsigned int Int64; |
---|
259 | #else |
---|
260 | typedef long long unsigned int Int64; |
---|
261 | #endif |
---|
262 | |
---|
263 | union {double d; Int64 i;} u; |
---|
264 | u.d = d; |
---|
265 | |
---|
266 | return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; |
---|
267 | } |
---|
268 | |
---|
269 | |
---|
270 | } // namespace Imath |
---|
271 | |
---|
272 | #endif |
---|