[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHLINEALGO_H |
---|
| 38 | #define INCLUDED_IMATHLINEALGO_H |
---|
| 39 | |
---|
| 40 | //------------------------------------------------------------------ |
---|
| 41 | // |
---|
| 42 | // This file contains algorithms applied to or in conjunction |
---|
| 43 | // with lines (Imath::Line). These algorithms may require |
---|
| 44 | // more headers to compile. The assumption made is that these |
---|
| 45 | // functions are called much less often than the basic line |
---|
| 46 | // functions or these functions require more support classes |
---|
| 47 | // |
---|
| 48 | // Contains: |
---|
| 49 | // |
---|
| 50 | // bool closestPoints(const Line<T>& line1, |
---|
| 51 | // const Line<T>& line2, |
---|
| 52 | // Vec3<T>& point1, |
---|
| 53 | // Vec3<T>& point2) |
---|
| 54 | // |
---|
| 55 | // bool intersect( const Line3<T> &line, |
---|
| 56 | // const Vec3<T> &v0, |
---|
| 57 | // const Vec3<T> &v1, |
---|
| 58 | // const Vec3<T> &v2, |
---|
| 59 | // Vec3<T> &pt, |
---|
| 60 | // Vec3<T> &barycentric, |
---|
| 61 | // bool &front) |
---|
| 62 | // |
---|
| 63 | // V3f |
---|
| 64 | // closestVertex(const Vec3<T> &v0, |
---|
| 65 | // const Vec3<T> &v1, |
---|
| 66 | // const Vec3<T> &v2, |
---|
| 67 | // const Line3<T> &l) |
---|
| 68 | // |
---|
| 69 | // V3f |
---|
| 70 | // nearestPointOnTriangle(const Vec3<T> &v0, |
---|
| 71 | // const Vec3<T> &v1, |
---|
| 72 | // const Vec3<T> &v2, |
---|
| 73 | // const Line3<T> &l) |
---|
| 74 | // |
---|
| 75 | // V3f |
---|
| 76 | // rotatePoint(const Vec3<T> p, Line3<T> l, float angle) |
---|
| 77 | // |
---|
| 78 | //------------------------------------------------------------------ |
---|
| 79 | |
---|
| 80 | #include <ImathLine.h> |
---|
| 81 | #include <ImathVecAlgo.h> |
---|
| 82 | |
---|
| 83 | namespace Imath { |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | template <class T> |
---|
| 87 | bool closestPoints(const Line3<T>& line1, |
---|
| 88 | const Line3<T>& line2, |
---|
| 89 | Vec3<T>& point1, |
---|
| 90 | Vec3<T>& point2) |
---|
| 91 | { |
---|
| 92 | // |
---|
| 93 | // Compute the closest points on two lines. This was originally |
---|
| 94 | // lifted from inventor. This function assumes that the line |
---|
| 95 | // directions are normalized. The original math has been collapsed. |
---|
| 96 | // |
---|
| 97 | |
---|
| 98 | T A = line1.dir ^ line2.dir; |
---|
| 99 | |
---|
| 100 | if ( A == 1 ) return false; |
---|
| 101 | |
---|
| 102 | T denom = A * A - 1; |
---|
| 103 | |
---|
| 104 | T B = (line1.dir ^ line1.pos) - (line1.dir ^ line2.pos); |
---|
| 105 | T C = (line2.dir ^ line1.pos) - (line2.dir ^ line2.pos); |
---|
| 106 | |
---|
| 107 | point1 = line1(( B - A * C ) / denom); |
---|
| 108 | point2 = line2(( B * A - C ) / denom); |
---|
| 109 | |
---|
| 110 | return true; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | template <class T> |
---|
| 116 | bool intersect( const Line3<T> &line, |
---|
| 117 | const Vec3<T> &v0, |
---|
| 118 | const Vec3<T> &v1, |
---|
| 119 | const Vec3<T> &v2, |
---|
| 120 | Vec3<T> &pt, |
---|
| 121 | Vec3<T> &barycentric, |
---|
| 122 | bool &front) |
---|
| 123 | { |
---|
| 124 | // Intersect the line with a triangle. |
---|
| 125 | // 1. find plane of triangle |
---|
| 126 | // 2. find intersection point of ray and plane |
---|
| 127 | // 3. pick plane to project point and triangle into |
---|
| 128 | // 4. check each edge of triangle to see if point is inside it |
---|
| 129 | |
---|
| 130 | // |
---|
| 131 | // XXX TODO - this routine is way too long |
---|
| 132 | // - the value of EPSILON is dubious |
---|
| 133 | // - there should be versions of this |
---|
| 134 | // routine that do not calculate the |
---|
| 135 | // barycentric coordinates or the |
---|
| 136 | // front flag |
---|
| 137 | |
---|
| 138 | const float EPSILON = 1e-6; |
---|
| 139 | |
---|
| 140 | T d, t, d01, d12, d20, vd0, vd1, vd2, ax, ay, az, sense; |
---|
| 141 | Vec3<T> v01, v12, v20, c; |
---|
| 142 | int axis0, axis1; |
---|
| 143 | |
---|
| 144 | // calculate plane for polygon |
---|
| 145 | v01 = v1 - v0; |
---|
| 146 | v12 = v2 - v1; |
---|
| 147 | |
---|
| 148 | // c is un-normalized normal |
---|
| 149 | c = v12.cross(v01); |
---|
| 150 | |
---|
| 151 | d = c.length(); |
---|
| 152 | if(d < EPSILON) |
---|
| 153 | return false; // cant hit a triangle with no area |
---|
| 154 | c = c * (1. / d); |
---|
| 155 | |
---|
| 156 | // calculate distance to plane along ray |
---|
| 157 | |
---|
| 158 | d = line.dir.dot(c); |
---|
| 159 | if (d < EPSILON && d > -EPSILON) |
---|
| 160 | return false; // line is parallel to plane containing triangle |
---|
| 161 | |
---|
| 162 | t = (v0 - line.pos).dot(c) / d; |
---|
| 163 | |
---|
| 164 | if(t < 0) |
---|
| 165 | return false; |
---|
| 166 | |
---|
| 167 | // calculate intersection point |
---|
| 168 | pt = line.pos + t * line.dir; |
---|
| 169 | |
---|
| 170 | // is point inside triangle? Project to 2d to find out |
---|
| 171 | // use the plane that has the largest absolute value |
---|
| 172 | // component in the normal |
---|
| 173 | ax = c[0] < 0 ? -c[0] : c[0]; |
---|
| 174 | ay = c[1] < 0 ? -c[1] : c[1]; |
---|
| 175 | az = c[2] < 0 ? -c[2] : c[2]; |
---|
| 176 | |
---|
| 177 | if(ax > ay && ax > az) |
---|
| 178 | { |
---|
| 179 | // project on x=0 plane |
---|
| 180 | |
---|
| 181 | axis0 = 1; |
---|
| 182 | axis1 = 2; |
---|
| 183 | sense = c[0] < 0 ? -1 : 1; |
---|
| 184 | } |
---|
| 185 | else if(ay > az) |
---|
| 186 | { |
---|
| 187 | axis0 = 2; |
---|
| 188 | axis1 = 0; |
---|
| 189 | sense = c[1] < 0 ? -1 : 1; |
---|
| 190 | } |
---|
| 191 | else |
---|
| 192 | { |
---|
| 193 | axis0 = 0; |
---|
| 194 | axis1 = 1; |
---|
| 195 | sense = c[2] < 0 ? -1 : 1; |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | // distance from v0-v1 must be less than distance from v2 to v0-v1 |
---|
| 199 | d01 = sense * ((pt[axis0] - v0[axis0]) * v01[axis1] |
---|
| 200 | - (pt[axis1] - v0[axis1]) * v01[axis0]); |
---|
| 201 | |
---|
| 202 | if(d01 < 0) return false; |
---|
| 203 | |
---|
| 204 | vd2 = sense * ((v2[axis0] - v0[axis0]) * v01[axis1] |
---|
| 205 | - (v2[axis1] - v0[axis1]) * v01[axis0]); |
---|
| 206 | |
---|
| 207 | if(d01 > vd2) return false; |
---|
| 208 | |
---|
| 209 | // distance from v1-v2 must be less than distance from v1 to v2-v0 |
---|
| 210 | d12 = sense * ((pt[axis0] - v1[axis0]) * v12[axis1] |
---|
| 211 | - (pt[axis1] - v1[axis1]) * v12[axis0]); |
---|
| 212 | |
---|
| 213 | if(d12 < 0) return false; |
---|
| 214 | |
---|
| 215 | vd0 = sense * ((v0[axis0] - v1[axis0]) * v12[axis1] |
---|
| 216 | - (v0[axis1] - v1[axis1]) * v12[axis0]); |
---|
| 217 | |
---|
| 218 | if(d12 > vd0) return false; |
---|
| 219 | |
---|
| 220 | // calculate v20, and do check on final side of triangle |
---|
| 221 | v20 = v0 - v2; |
---|
| 222 | d20 = sense * ((pt[axis0] - v2[axis0]) * v20[axis1] |
---|
| 223 | - (pt[axis1] - v2[axis1]) * v20[axis0]); |
---|
| 224 | |
---|
| 225 | if(d20 < 0) return false; |
---|
| 226 | |
---|
| 227 | vd1 = sense * ((v1[axis0] - v2[axis0]) * v20[axis1] |
---|
| 228 | - (v1[axis1] - v2[axis1]) * v20[axis0]); |
---|
| 229 | |
---|
| 230 | if(d20 > vd1) return false; |
---|
| 231 | |
---|
| 232 | // vd0, vd1, and vd2 will always be non-zero for a triangle |
---|
| 233 | // that has non-zero area (we return before this for |
---|
| 234 | // zero area triangles) |
---|
| 235 | barycentric = Vec3<T>(d12 / vd0, d20 / vd1, d01 / vd2); |
---|
| 236 | front = line.dir.dot(c) < 0; |
---|
| 237 | |
---|
| 238 | return true; |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | template <class T> |
---|
| 242 | Vec3<T> |
---|
| 243 | closestVertex(const Vec3<T> &v0, |
---|
| 244 | const Vec3<T> &v1, |
---|
| 245 | const Vec3<T> &v2, |
---|
| 246 | const Line3<T> &l) |
---|
| 247 | { |
---|
| 248 | Vec3<T> nearest = v0; |
---|
| 249 | T neardot = (v0 - l.closestPointTo(v0)).length2(); |
---|
| 250 | |
---|
| 251 | T tmp = (v1 - l.closestPointTo(v1)).length2(); |
---|
| 252 | |
---|
| 253 | if (tmp < neardot) |
---|
| 254 | { |
---|
| 255 | neardot = tmp; |
---|
| 256 | nearest = v1; |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | tmp = (v2 - l.closestPointTo(v2)).length2(); |
---|
| 260 | if (tmp < neardot) |
---|
| 261 | { |
---|
| 262 | neardot = tmp; |
---|
| 263 | nearest = v2; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | return nearest; |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | template <class T> |
---|
| 270 | Vec3<T> |
---|
| 271 | nearestPointOnTriangle(const Vec3<T> &v0, |
---|
| 272 | const Vec3<T> &v1, |
---|
| 273 | const Vec3<T> &v2, |
---|
| 274 | const Line3<T> &l) |
---|
| 275 | { |
---|
| 276 | Vec3<T> pt, barycentric; |
---|
| 277 | bool front; |
---|
| 278 | |
---|
| 279 | if (intersect (l, v0, v1, v2, pt, barycentric, front)) |
---|
| 280 | return pt; |
---|
| 281 | |
---|
| 282 | // |
---|
| 283 | // The line did not intersect the triangle, so to be picky, you should |
---|
| 284 | // find the closest edge that it passed over/under, but chances are that |
---|
| 285 | // 1) another triangle will be closer |
---|
| 286 | // 2) the app does not need this much precision for a ray that does not |
---|
| 287 | // intersect the triangle |
---|
| 288 | // 3) the expense of the calculation is not worth it since this is the |
---|
| 289 | // common case |
---|
| 290 | // |
---|
| 291 | // XXX TODO This is bogus -- nearestPointOnTriangle() should do |
---|
| 292 | // what its name implies; it should return a point |
---|
| 293 | // on an edge if some edge is closer to the line than |
---|
| 294 | // any vertex. If the application does not want the |
---|
| 295 | // extra calculations, it should be possible to specify |
---|
| 296 | // that; it is not up to this nearestPointOnTriangle() |
---|
| 297 | // to make the decision. |
---|
| 298 | |
---|
| 299 | return closestVertex(v0, v1, v2, l); |
---|
| 300 | } |
---|
| 301 | |
---|
| 302 | template <class T> |
---|
| 303 | Vec3<T> |
---|
| 304 | rotatePoint(const Vec3<T> p, Line3<T> l, T angle) |
---|
| 305 | { |
---|
| 306 | // |
---|
| 307 | // Rotate the point p around the line l by the given angle. |
---|
| 308 | // |
---|
| 309 | |
---|
| 310 | // |
---|
| 311 | // Form a coordinate frame with <x,y,a>. The rotation is the in xy |
---|
| 312 | // plane. |
---|
| 313 | // |
---|
| 314 | |
---|
| 315 | Vec3<T> q = l.closestPointTo(p); |
---|
| 316 | Vec3<T> x = p - q; |
---|
| 317 | T radius = x.length(); |
---|
| 318 | |
---|
| 319 | x.normalize(); |
---|
| 320 | Vec3<T> y = (x % l.dir).normalize(); |
---|
| 321 | |
---|
| 322 | T cosangle = Math<T>::cos(angle); |
---|
| 323 | T sinangle = Math<T>::sin(angle); |
---|
| 324 | |
---|
| 325 | Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle; |
---|
| 326 | |
---|
| 327 | return r; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | } // namespace Imath |
---|
| 332 | |
---|
| 333 | #endif |
---|