1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHMATH_H |
---|
38 | #define INCLUDED_IMATHMATH_H |
---|
39 | |
---|
40 | //---------------------------------------------------------------------------- |
---|
41 | // |
---|
42 | // ImathMath.h |
---|
43 | // |
---|
44 | // This file contains template functions which call the double- |
---|
45 | // precision math functions defined in math.h (sin(), sqrt(), |
---|
46 | // exp() etc.), with specializations that call the faster |
---|
47 | // single-precision versions (sinf(), sqrtf(), expf() etc.) |
---|
48 | // when appropriate. |
---|
49 | // |
---|
50 | // Example: |
---|
51 | // |
---|
52 | // double x = Math<double>::sqrt (3); // calls ::sqrt(double); |
---|
53 | // float y = Math<float>::sqrt (3); // calls ::sqrtf(float); |
---|
54 | // |
---|
55 | // When would I want to use this? |
---|
56 | // |
---|
57 | // You may be writing a template which needs to call some function |
---|
58 | // defined in math.h, for example to extract a square root, but you |
---|
59 | // don't know whether to call the single- or the double-precision |
---|
60 | // version of this function (sqrt() or sqrtf()): |
---|
61 | // |
---|
62 | // template <class T> |
---|
63 | // T |
---|
64 | // glorp (T x) |
---|
65 | // { |
---|
66 | // return sqrt (x + 1); // should call ::sqrtf(float) |
---|
67 | // } // if x is a float, but we |
---|
68 | // // don't know if it is |
---|
69 | // |
---|
70 | // Using the templates in this file, you can make sure that |
---|
71 | // the appropriate version of the math function is called: |
---|
72 | // |
---|
73 | // template <class T> |
---|
74 | // T |
---|
75 | // glorp (T x, T y) |
---|
76 | // { |
---|
77 | // return Math<T>::sqrt (x + 1); // calls ::sqrtf(float) if x |
---|
78 | // } // is a float, ::sqrt(double) |
---|
79 | // // otherwise |
---|
80 | // |
---|
81 | //---------------------------------------------------------------------------- |
---|
82 | |
---|
83 | #include <ImathPlatform.h> |
---|
84 | #include <math.h> |
---|
85 | |
---|
86 | // |
---|
87 | // The following pragmas instruct Silicon Graphics' MipsPro C++ |
---|
88 | // to generate inline code rather than function calls for sqrt() |
---|
89 | // and sqrtf(). |
---|
90 | // |
---|
91 | |
---|
92 | #if defined(PLATFORM_IRIX) || defined(PLATFORM_IRIX64) |
---|
93 | |
---|
94 | #pragma intrinsic (::sqrt) |
---|
95 | #pragma intrinsic (::sqrtf) |
---|
96 | |
---|
97 | #endif |
---|
98 | |
---|
99 | namespace Imath { |
---|
100 | |
---|
101 | |
---|
102 | template <class T> |
---|
103 | struct Math |
---|
104 | { |
---|
105 | static T acos (T x) {return ::acos (double(x));} |
---|
106 | static T asin (T x) {return ::asin (double(x));} |
---|
107 | static T atan (T x) {return ::atan (double(x));} |
---|
108 | static T atan2 (T x, T y) {return ::atan2 (double(x), double(y));} |
---|
109 | static T cos (T x) {return ::cos (double(x));} |
---|
110 | static T sin (T x) {return ::sin (double(x));} |
---|
111 | static T tan (T x) {return ::tan (double(x));} |
---|
112 | static T cosh (T x) {return ::cosh (double(x));} |
---|
113 | static T sinh (T x) {return ::sinh (double(x));} |
---|
114 | static T tanh (T x) {return ::tanh (double(x));} |
---|
115 | static T exp (T x) {return ::exp (double(x));} |
---|
116 | static T log (T x) {return ::log (double(x));} |
---|
117 | static T log10 (T x) {return ::log10 (double(x));} |
---|
118 | #if defined(PLATFORM_SUNOS5) // SUN does not seem to have floating point funcs !! |
---|
119 | // static T modf (T x, T *y) {return ::modf (double(x), double(y));} |
---|
120 | #else |
---|
121 | static T modf (T x, T *iptr) |
---|
122 | { |
---|
123 | double ival; |
---|
124 | T rval( ::modf (double(x),&ival)); |
---|
125 | *iptr = ival; |
---|
126 | return rval; |
---|
127 | } |
---|
128 | #endif |
---|
129 | static T pow (T x, T y) {return ::pow (double(x), double(y));} |
---|
130 | static T sqrt (T x) {return ::sqrt (double(x));} |
---|
131 | static T ceil (T x) {return ::ceil (double(x));} |
---|
132 | static T fabs (T x) {return ::fabs (double(x));} |
---|
133 | static T floor (T x) {return ::floor (double(x));} |
---|
134 | #if defined(PLATFORM_SUNOS5) // SUN does not seem to have floating point funcs !! |
---|
135 | // static T fmod (T x, T y) {return ::fmod (double(x), double(y));} |
---|
136 | #else |
---|
137 | static T fmod (T x, T y) {return ::fmod (double(x), double(y));} |
---|
138 | #endif |
---|
139 | #if !defined(PLATFORM_OSF1) |
---|
140 | static T hypot (T x, T y) {return ::hypot (double(x), double(y));} |
---|
141 | #endif |
---|
142 | }; |
---|
143 | |
---|
144 | |
---|
145 | // Sun, Apple, and Microsoft don't have floating point funcs |
---|
146 | #if defined ( PLATFORM_SUNOS5 ) || defined ( PLATFORM_DARWIN_PPC ) |
---|
147 | |
---|
148 | template <> |
---|
149 | struct Math<float> |
---|
150 | { |
---|
151 | static float acos (float x) {return ::acos (x);} |
---|
152 | static float asin (float x) {return ::asin (x);} |
---|
153 | static float atan (float x) {return ::atan (x);} |
---|
154 | static float atan2 (float x, float y) {return ::atan2 (x, y);} |
---|
155 | static float cos (float x) {return ::cos (x);} |
---|
156 | static float sin (float x) {return ::sin (x);} |
---|
157 | static float tan (float x) {return ::tan (x);} |
---|
158 | static float cosh (float x) {return ::cosh (x);} |
---|
159 | static float sinh (float x) {return ::sinh (x);} |
---|
160 | static float tanh (float x) {return ::tanh (x);} |
---|
161 | static float exp (float x) {return ::exp (x);} |
---|
162 | static float log (float x) {return ::log (x);} |
---|
163 | static float log10 (float x) {return ::log10 (x);} |
---|
164 | // static float modf (float x, float *y) {return ::modf (x, y);} |
---|
165 | static float pow (float x, float y) {return ::pow (x, y);} |
---|
166 | static float sqrt (float x) {return ::sqrt (x);} |
---|
167 | static float ceil (float x) {return ::ceil (x);} |
---|
168 | static float fabs (float x) {return ::fabs (x);} |
---|
169 | static float floor (float x) {return ::floor (x);} |
---|
170 | // static float fmod (float x, float y) {return ::fmod (x, y);} |
---|
171 | static float hypot (float x, float y) {return ::hypot (x, y);} |
---|
172 | }; |
---|
173 | #else |
---|
174 | template <> |
---|
175 | struct Math<float> |
---|
176 | { |
---|
177 | static float acos (float x) {return ::acosf (x);} |
---|
178 | static float asin (float x) {return ::asinf (x);} |
---|
179 | static float atan (float x) {return ::atanf (x);} |
---|
180 | static float atan2 (float x, float y) {return ::atan2f (x, y);} |
---|
181 | static float cos (float x) {return ::cosf (x);} |
---|
182 | static float sin (float x) {return ::sinf (x);} |
---|
183 | static float tan (float x) {return ::tanf (x);} |
---|
184 | static float cosh (float x) {return ::coshf (x);} |
---|
185 | static float sinh (float x) {return ::sinhf (x);} |
---|
186 | static float tanh (float x) {return ::tanhf (x);} |
---|
187 | static float exp (float x) {return ::expf (x);} |
---|
188 | static float log (float x) {return ::logf (x);} |
---|
189 | static float log10 (float x) {return ::log10f (x);} |
---|
190 | static float modf (float x, float *y) {return ::modff (x, y);} |
---|
191 | static float pow (float x, float y) {return ::powf (x, y);} |
---|
192 | static float sqrt (float x) {return ::sqrtf (x);} |
---|
193 | static float ceil (float x) {return ::ceilf (x);} |
---|
194 | static float fabs (float x) {return ::fabsf (x);} |
---|
195 | static float floor (float x) {return ::floorf (x);} |
---|
196 | static float fmod (float x, float y) {return ::fmodf (x, y);} |
---|
197 | #if !defined(PLATFORM_OSF1) && !defined(_MSC_VER) |
---|
198 | static float hypot (float x, float y) {return ::hypotf (x, y);} |
---|
199 | #else |
---|
200 | static float hypot (float x, float y) {return ::sqrtf(x*x + y*y);} |
---|
201 | #endif |
---|
202 | }; |
---|
203 | #endif |
---|
204 | |
---|
205 | |
---|
206 | //-------------------------------------------------------------------------- |
---|
207 | // Compare two numbers and test if they are "approximately equal": |
---|
208 | // |
---|
209 | // equalWithAbsError (x1, x2, e) |
---|
210 | // |
---|
211 | // Returns true if x1 is the same as x2 with an absolute error of |
---|
212 | // no more than e, |
---|
213 | // |
---|
214 | // abs (x1 - x2) <= e |
---|
215 | // |
---|
216 | // equalWithRelError (x1, x2, e) |
---|
217 | // |
---|
218 | // Returns true if x1 is the same as x2 with an relative error of |
---|
219 | // no more than e, |
---|
220 | // |
---|
221 | // abs (x1 - x2) <= e * x1 |
---|
222 | // |
---|
223 | //-------------------------------------------------------------------------- |
---|
224 | |
---|
225 | template <class T> |
---|
226 | inline bool |
---|
227 | equalWithAbsError (T x1, T x2, T e) |
---|
228 | { |
---|
229 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e; |
---|
230 | } |
---|
231 | |
---|
232 | |
---|
233 | template <class T> |
---|
234 | inline bool |
---|
235 | equalWithRelError (T x1, T x2, T e) |
---|
236 | { |
---|
237 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1); |
---|
238 | } |
---|
239 | |
---|
240 | |
---|
241 | |
---|
242 | } // namespace Imath |
---|
243 | |
---|
244 | #endif |
---|