[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | #ifndef INCLUDED_IMATHMATRIXALGO_H |
---|
| 37 | #define INCLUDED_IMATHMATRIXALGO_H |
---|
| 38 | |
---|
| 39 | //------------------------------------------------------------------------- |
---|
| 40 | // |
---|
| 41 | // This file contains algorithms applied to or in conjunction with |
---|
| 42 | // transformation matrices (Imath::Matrix33 and Imath::Matrix44). |
---|
| 43 | // The assumption made is that these functions are called much less |
---|
| 44 | // often than the basic point functions or these functions require |
---|
| 45 | // more support classes. |
---|
| 46 | // |
---|
| 47 | // This file also defines a few predefined constant matrices. |
---|
| 48 | // |
---|
| 49 | //------------------------------------------------------------------------- |
---|
| 50 | |
---|
| 51 | #include <ImathMatrix.h> |
---|
| 52 | #include <ImathQuat.h> |
---|
| 53 | #include <ImathEuler.h> |
---|
| 54 | #include <ImathExc.h> |
---|
| 55 | #include <ImathVec.h> |
---|
| 56 | #include <math.h> |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | #ifdef OPENEXR_DLL |
---|
| 60 | #ifdef IMATH_EXPORTS |
---|
| 61 | #define IMATH_EXPORT_CONST extern __declspec(dllexport) |
---|
| 62 | #else |
---|
| 63 | #define IMATH_EXPORT_CONST extern __declspec(dllimport) |
---|
| 64 | #endif |
---|
| 65 | #else |
---|
| 66 | #define IMATH_EXPORT_CONST extern const |
---|
| 67 | #endif |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | namespace Imath { |
---|
| 71 | |
---|
| 72 | //------------------ |
---|
| 73 | // Identity matrices |
---|
| 74 | //------------------ |
---|
| 75 | |
---|
| 76 | IMATH_EXPORT_CONST M33f identity33f; |
---|
| 77 | IMATH_EXPORT_CONST M44f identity44f; |
---|
| 78 | IMATH_EXPORT_CONST M33d identity33d; |
---|
| 79 | IMATH_EXPORT_CONST M44d identity44d; |
---|
| 80 | |
---|
| 81 | //---------------------------------------------------------------------- |
---|
| 82 | // Extract scale, shear, rotation, and translation values from a matrix: |
---|
| 83 | // |
---|
| 84 | // Notes: |
---|
| 85 | // |
---|
| 86 | // This implementation follows the technique described in the paper by |
---|
| 87 | // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a |
---|
| 88 | // Matrix into Simple Transformations", p. 320. |
---|
| 89 | // |
---|
| 90 | // - Some of the functions below have an optional exc parameter |
---|
| 91 | // that determines the functions' behavior when the matrix' |
---|
| 92 | // scaling is very close to zero: |
---|
| 93 | // |
---|
| 94 | // If exc is true, the functions throw an Imath::ZeroScale exception. |
---|
| 95 | // |
---|
| 96 | // If exc is false: |
---|
| 97 | // |
---|
| 98 | // extractScaling (m, s) returns false, s is invalid |
---|
| 99 | // sansScaling (m) returns m |
---|
| 100 | // removeScaling (m) returns false, m is unchanged |
---|
| 101 | // sansScalingAndShear (m) returns m |
---|
| 102 | // removeScalingAndShear (m) returns false, m is unchanged |
---|
| 103 | // extractAndRemoveScalingAndShear (m, s, h) |
---|
| 104 | // returns false, m is unchanged, |
---|
| 105 | // (sh) are invalid |
---|
| 106 | // checkForZeroScaleInRow () returns false |
---|
| 107 | // extractSHRT (m, s, h, r, t) returns false, (shrt) are invalid |
---|
| 108 | // |
---|
| 109 | // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() |
---|
| 110 | // assume that the matrix does not include shear or non-uniform scaling, |
---|
| 111 | // but they do not examine the matrix to verify this assumption. |
---|
| 112 | // Matrices with shear or non-uniform scaling are likely to produce |
---|
| 113 | // meaningless results. Therefore, you should use the |
---|
| 114 | // removeScalingAndShear() routine, if necessary, prior to calling |
---|
| 115 | // extractEuler...() . |
---|
| 116 | // |
---|
| 117 | // - All functions assume that the matrix does not include perspective |
---|
| 118 | // transformation(s), but they do not examine the matrix to verify |
---|
| 119 | // this assumption. Matrices with perspective transformations are |
---|
| 120 | // likely to produce meaningless results. |
---|
| 121 | // |
---|
| 122 | //---------------------------------------------------------------------- |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | // |
---|
| 126 | // Declarations for 4x4 matrix. |
---|
| 127 | // |
---|
| 128 | |
---|
| 129 | template <class T> bool extractScaling |
---|
| 130 | (const Matrix44<T> &mat, |
---|
| 131 | Vec3<T> &scl, |
---|
| 132 | bool exc = true); |
---|
| 133 | |
---|
| 134 | template <class T> Matrix44<T> sansScaling (const Matrix44<T> &mat, |
---|
| 135 | bool exc = true); |
---|
| 136 | |
---|
| 137 | template <class T> bool removeScaling |
---|
| 138 | (Matrix44<T> &mat, |
---|
| 139 | bool exc = true); |
---|
| 140 | |
---|
| 141 | template <class T> bool extractScalingAndShear |
---|
| 142 | (const Matrix44<T> &mat, |
---|
| 143 | Vec3<T> &scl, |
---|
| 144 | Vec3<T> &shr, |
---|
| 145 | bool exc = true); |
---|
| 146 | |
---|
| 147 | template <class T> Matrix44<T> sansScalingAndShear |
---|
| 148 | (const Matrix44<T> &mat, |
---|
| 149 | bool exc = true); |
---|
| 150 | |
---|
| 151 | template <class T> bool removeScalingAndShear |
---|
| 152 | (Matrix44<T> &mat, |
---|
| 153 | bool exc = true); |
---|
| 154 | |
---|
| 155 | template <class T> bool extractAndRemoveScalingAndShear |
---|
| 156 | (Matrix44<T> &mat, |
---|
| 157 | Vec3<T> &scl, |
---|
| 158 | Vec3<T> &shr, |
---|
| 159 | bool exc = true); |
---|
| 160 | |
---|
| 161 | template <class T> void extractEulerXYZ |
---|
| 162 | (const Matrix44<T> &mat, |
---|
| 163 | Vec3<T> &rot); |
---|
| 164 | |
---|
| 165 | template <class T> void extractEulerZYX |
---|
| 166 | (const Matrix44<T> &mat, |
---|
| 167 | Vec3<T> &rot); |
---|
| 168 | |
---|
| 169 | template <class T> Quat<T> extractQuat (const Matrix44<T> &mat); |
---|
| 170 | |
---|
| 171 | template <class T> bool extractSHRT |
---|
| 172 | (const Matrix44<T> &mat, |
---|
| 173 | Vec3<T> &s, |
---|
| 174 | Vec3<T> &h, |
---|
| 175 | Vec3<T> &r, |
---|
| 176 | Vec3<T> &t, |
---|
| 177 | bool exc /*= true*/, |
---|
| 178 | typename Euler<T>::Order rOrder); |
---|
| 179 | |
---|
| 180 | template <class T> bool extractSHRT |
---|
| 181 | (const Matrix44<T> &mat, |
---|
| 182 | Vec3<T> &s, |
---|
| 183 | Vec3<T> &h, |
---|
| 184 | Vec3<T> &r, |
---|
| 185 | Vec3<T> &t, |
---|
| 186 | bool exc = true); |
---|
| 187 | |
---|
| 188 | template <class T> bool extractSHRT |
---|
| 189 | (const Matrix44<T> &mat, |
---|
| 190 | Vec3<T> &s, |
---|
| 191 | Vec3<T> &h, |
---|
| 192 | Euler<T> &r, |
---|
| 193 | Vec3<T> &t, |
---|
| 194 | bool exc = true); |
---|
| 195 | |
---|
| 196 | // |
---|
| 197 | // Internal utility function. |
---|
| 198 | // |
---|
| 199 | |
---|
| 200 | template <class T> bool checkForZeroScaleInRow |
---|
| 201 | (const T &scl, |
---|
| 202 | const Vec3<T> &row, |
---|
| 203 | bool exc = true); |
---|
| 204 | |
---|
| 205 | // |
---|
| 206 | // Returns a matrix that rotates "fromDirection" vector to "toDirection" |
---|
| 207 | // vector. |
---|
| 208 | // |
---|
| 209 | |
---|
| 210 | template <class T> Matrix44<T> rotationMatrix (const Vec3<T> &fromDirection, |
---|
| 211 | const Vec3<T> &toDirection); |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | // |
---|
| 216 | // Returns a matrix that rotates the "fromDir" vector |
---|
| 217 | // so that it points towards "toDir". You may also |
---|
| 218 | // specify that you want the up vector to be pointing |
---|
| 219 | // in a certain direction "upDir". |
---|
| 220 | // |
---|
| 221 | |
---|
| 222 | template <class T> Matrix44<T> rotationMatrixWithUpDir |
---|
| 223 | (const Vec3<T> &fromDir, |
---|
| 224 | const Vec3<T> &toDir, |
---|
| 225 | const Vec3<T> &upDir); |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | // |
---|
| 229 | // Returns a matrix that rotates the z-axis so that it |
---|
| 230 | // points towards "targetDir". You must also specify |
---|
| 231 | // that you want the up vector to be pointing in a |
---|
| 232 | // certain direction "upDir". |
---|
| 233 | // |
---|
| 234 | // Notes: The following degenerate cases are handled: |
---|
| 235 | // (a) when the directions given by "toDir" and "upDir" |
---|
| 236 | // are parallel or opposite; |
---|
| 237 | // (the direction vectors must have a non-zero cross product) |
---|
| 238 | // (b) when any of the given direction vectors have zero length |
---|
| 239 | // |
---|
| 240 | |
---|
| 241 | template <class T> Matrix44<T> alignZAxisWithTargetDir |
---|
| 242 | (Vec3<T> targetDir, |
---|
| 243 | Vec3<T> upDir); |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | //---------------------------------------------------------------------- |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | // |
---|
| 250 | // Declarations for 3x3 matrix. |
---|
| 251 | // |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | template <class T> bool extractScaling |
---|
| 255 | (const Matrix33<T> &mat, |
---|
| 256 | Vec2<T> &scl, |
---|
| 257 | bool exc = true); |
---|
| 258 | |
---|
| 259 | template <class T> Matrix33<T> sansScaling (const Matrix33<T> &mat, |
---|
| 260 | bool exc = true); |
---|
| 261 | |
---|
| 262 | template <class T> bool removeScaling |
---|
| 263 | (Matrix33<T> &mat, |
---|
| 264 | bool exc = true); |
---|
| 265 | |
---|
| 266 | template <class T> bool extractScalingAndShear |
---|
| 267 | (const Matrix33<T> &mat, |
---|
| 268 | Vec2<T> &scl, |
---|
| 269 | T &h, |
---|
| 270 | bool exc = true); |
---|
| 271 | |
---|
| 272 | template <class T> Matrix33<T> sansScalingAndShear |
---|
| 273 | (const Matrix33<T> &mat, |
---|
| 274 | bool exc = true); |
---|
| 275 | |
---|
| 276 | template <class T> bool removeScalingAndShear |
---|
| 277 | (Matrix33<T> &mat, |
---|
| 278 | bool exc = true); |
---|
| 279 | |
---|
| 280 | template <class T> bool extractAndRemoveScalingAndShear |
---|
| 281 | (Matrix33<T> &mat, |
---|
| 282 | Vec2<T> &scl, |
---|
| 283 | T &shr, |
---|
| 284 | bool exc = true); |
---|
| 285 | |
---|
| 286 | template <class T> void extractEuler |
---|
| 287 | (const Matrix33<T> &mat, |
---|
| 288 | T &rot); |
---|
| 289 | |
---|
| 290 | template <class T> bool extractSHRT (const Matrix33<T> &mat, |
---|
| 291 | Vec2<T> &s, |
---|
| 292 | T &h, |
---|
| 293 | T &r, |
---|
| 294 | Vec2<T> &t, |
---|
| 295 | bool exc = true); |
---|
| 296 | |
---|
| 297 | template <class T> bool checkForZeroScaleInRow |
---|
| 298 | (const T &scl, |
---|
| 299 | const Vec2<T> &row, |
---|
| 300 | bool exc = true); |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | //----------------------------------------------------------------------------- |
---|
| 306 | // Implementation for 4x4 Matrix |
---|
| 307 | //------------------------------ |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | template <class T> |
---|
| 311 | bool |
---|
| 312 | extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc) |
---|
| 313 | { |
---|
| 314 | Vec3<T> shr; |
---|
| 315 | Matrix44<T> M (mat); |
---|
| 316 | |
---|
| 317 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 318 | return false; |
---|
| 319 | |
---|
| 320 | return true; |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | template <class T> |
---|
| 325 | Matrix44<T> |
---|
| 326 | sansScaling (const Matrix44<T> &mat, bool exc) |
---|
| 327 | { |
---|
| 328 | Vec3<T> scl; |
---|
| 329 | Vec3<T> shr; |
---|
| 330 | Vec3<T> rot; |
---|
| 331 | Vec3<T> tran; |
---|
| 332 | |
---|
| 333 | if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
---|
| 334 | return mat; |
---|
| 335 | |
---|
| 336 | Matrix44<T> M; |
---|
| 337 | |
---|
| 338 | M.translate (tran); |
---|
| 339 | M.rotate (rot); |
---|
| 340 | M.shear (shr); |
---|
| 341 | |
---|
| 342 | return M; |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | template <class T> |
---|
| 347 | bool |
---|
| 348 | removeScaling (Matrix44<T> &mat, bool exc) |
---|
| 349 | { |
---|
| 350 | Vec3<T> scl; |
---|
| 351 | Vec3<T> shr; |
---|
| 352 | Vec3<T> rot; |
---|
| 353 | Vec3<T> tran; |
---|
| 354 | |
---|
| 355 | if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
---|
| 356 | return false; |
---|
| 357 | |
---|
| 358 | mat.makeIdentity (); |
---|
| 359 | mat.translate (tran); |
---|
| 360 | mat.rotate (rot); |
---|
| 361 | mat.shear (shr); |
---|
| 362 | |
---|
| 363 | return true; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | template <class T> |
---|
| 368 | bool |
---|
| 369 | extractScalingAndShear (const Matrix44<T> &mat, |
---|
| 370 | Vec3<T> &scl, Vec3<T> &shr, bool exc) |
---|
| 371 | { |
---|
| 372 | Matrix44<T> M (mat); |
---|
| 373 | |
---|
| 374 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 375 | return false; |
---|
| 376 | |
---|
| 377 | return true; |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | template <class T> |
---|
| 382 | Matrix44<T> |
---|
| 383 | sansScalingAndShear (const Matrix44<T> &mat, bool exc) |
---|
| 384 | { |
---|
| 385 | Vec3<T> scl; |
---|
| 386 | Vec3<T> shr; |
---|
| 387 | Matrix44<T> M (mat); |
---|
| 388 | |
---|
| 389 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 390 | return mat; |
---|
| 391 | |
---|
| 392 | return M; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | template <class T> |
---|
| 397 | bool |
---|
| 398 | removeScalingAndShear (Matrix44<T> &mat, bool exc) |
---|
| 399 | { |
---|
| 400 | Vec3<T> scl; |
---|
| 401 | Vec3<T> shr; |
---|
| 402 | |
---|
| 403 | if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc)) |
---|
| 404 | return false; |
---|
| 405 | |
---|
| 406 | return true; |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | template <class T> |
---|
| 411 | bool |
---|
| 412 | extractAndRemoveScalingAndShear (Matrix44<T> &mat, |
---|
| 413 | Vec3<T> &scl, Vec3<T> &shr, bool exc) |
---|
| 414 | { |
---|
| 415 | // |
---|
| 416 | // This implementation follows the technique described in the paper by |
---|
| 417 | // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a |
---|
| 418 | // Matrix into Simple Transformations", p. 320. |
---|
| 419 | // |
---|
| 420 | |
---|
| 421 | Vec3<T> row[3]; |
---|
| 422 | |
---|
| 423 | row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]); |
---|
| 424 | row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]); |
---|
| 425 | row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]); |
---|
| 426 | |
---|
| 427 | T maxVal = 0; |
---|
| 428 | for (int i=0; i < 3; i++) |
---|
| 429 | for (int j=0; j < 3; j++) |
---|
| 430 | if (Imath::abs (row[i][j]) > maxVal) |
---|
| 431 | maxVal = Imath::abs (row[i][j]); |
---|
| 432 | |
---|
| 433 | // |
---|
| 434 | // We normalize the 3x3 matrix here. |
---|
| 435 | // It was noticed that this can improve numerical stability significantly, |
---|
| 436 | // especially when many of the upper 3x3 matrix's coefficients are very |
---|
| 437 | // close to zero; we correct for this step at the end by multiplying the |
---|
| 438 | // scaling factors by maxVal at the end (shear and rotation are not |
---|
| 439 | // affected by the normalization). |
---|
| 440 | |
---|
| 441 | if (maxVal != 0) |
---|
| 442 | { |
---|
| 443 | for (int i=0; i < 3; i++) |
---|
| 444 | if (! checkForZeroScaleInRow (maxVal, row[i], exc)) |
---|
| 445 | return false; |
---|
| 446 | else |
---|
| 447 | row[i] /= maxVal; |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | // Compute X scale factor. |
---|
| 451 | scl.x = row[0].length (); |
---|
| 452 | if (! checkForZeroScaleInRow (scl.x, row[0], exc)) |
---|
| 453 | return false; |
---|
| 454 | |
---|
| 455 | // Normalize first row. |
---|
| 456 | row[0] /= scl.x; |
---|
| 457 | |
---|
| 458 | // An XY shear factor will shear the X coord. as the Y coord. changes. |
---|
| 459 | // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only |
---|
| 460 | // extract the first 3 because we can effect the last 3 by shearing in |
---|
| 461 | // XY, XZ, YZ combined rotations and scales. |
---|
| 462 | // |
---|
| 463 | // shear matrix < 1, YX, ZX, 0, |
---|
| 464 | // XY, 1, ZY, 0, |
---|
| 465 | // XZ, YZ, 1, 0, |
---|
| 466 | // 0, 0, 0, 1 > |
---|
| 467 | |
---|
| 468 | // Compute XY shear factor and make 2nd row orthogonal to 1st. |
---|
| 469 | shr[0] = row[0].dot (row[1]); |
---|
| 470 | row[1] -= shr[0] * row[0]; |
---|
| 471 | |
---|
| 472 | // Now, compute Y scale. |
---|
| 473 | scl.y = row[1].length (); |
---|
| 474 | if (! checkForZeroScaleInRow (scl.y, row[1], exc)) |
---|
| 475 | return false; |
---|
| 476 | |
---|
| 477 | // Normalize 2nd row and correct the XY shear factor for Y scaling. |
---|
| 478 | row[1] /= scl.y; |
---|
| 479 | shr[0] /= scl.y; |
---|
| 480 | |
---|
| 481 | // Compute XZ and YZ shears, orthogonalize 3rd row. |
---|
| 482 | shr[1] = row[0].dot (row[2]); |
---|
| 483 | row[2] -= shr[1] * row[0]; |
---|
| 484 | shr[2] = row[1].dot (row[2]); |
---|
| 485 | row[2] -= shr[2] * row[1]; |
---|
| 486 | |
---|
| 487 | // Next, get Z scale. |
---|
| 488 | scl.z = row[2].length (); |
---|
| 489 | if (! checkForZeroScaleInRow (scl.z, row[2], exc)) |
---|
| 490 | return false; |
---|
| 491 | |
---|
| 492 | // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling. |
---|
| 493 | row[2] /= scl.z; |
---|
| 494 | shr[1] /= scl.z; |
---|
| 495 | shr[2] /= scl.z; |
---|
| 496 | |
---|
| 497 | // At this point, the upper 3x3 matrix in mat is orthonormal. |
---|
| 498 | // Check for a coordinate system flip. If the determinant |
---|
| 499 | // is less than zero, then negate the matrix and the scaling factors. |
---|
| 500 | if (row[0].dot (row[1].cross (row[2])) < 0) |
---|
| 501 | for (int i=0; i < 3; i++) |
---|
| 502 | { |
---|
| 503 | scl[i] *= -1; |
---|
| 504 | row[i] *= -1; |
---|
| 505 | } |
---|
| 506 | |
---|
| 507 | // Copy over the orthonormal rows into the returned matrix. |
---|
| 508 | // The upper 3x3 matrix in mat is now a rotation matrix. |
---|
| 509 | for (int i=0; i < 3; i++) |
---|
| 510 | { |
---|
| 511 | mat[i][0] = row[i][0]; |
---|
| 512 | mat[i][1] = row[i][1]; |
---|
| 513 | mat[i][2] = row[i][2]; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | // Correct the scaling factors for the normalization step that we |
---|
| 517 | // performed above; shear and rotation are not affected by the |
---|
| 518 | // normalization. |
---|
| 519 | scl *= maxVal; |
---|
| 520 | |
---|
| 521 | return true; |
---|
| 522 | } |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | template <class T> |
---|
| 526 | void |
---|
| 527 | extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot) |
---|
| 528 | { |
---|
| 529 | // |
---|
| 530 | // Normalize the local x, y and z axes to remove scaling. |
---|
| 531 | // |
---|
| 532 | |
---|
| 533 | Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]); |
---|
| 534 | Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]); |
---|
| 535 | Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]); |
---|
| 536 | |
---|
| 537 | i.normalize(); |
---|
| 538 | j.normalize(); |
---|
| 539 | k.normalize(); |
---|
| 540 | |
---|
| 541 | Matrix44<T> M (i[0], i[1], i[2], 0, |
---|
| 542 | j[0], j[1], j[2], 0, |
---|
| 543 | k[0], k[1], k[2], 0, |
---|
| 544 | 0, 0, 0, 1); |
---|
| 545 | |
---|
| 546 | // |
---|
| 547 | // Extract the first angle, rot.x. |
---|
| 548 | // |
---|
| 549 | |
---|
| 550 | rot.x = Math<T>::atan2 (M[1][2], M[2][2]); |
---|
| 551 | |
---|
| 552 | // |
---|
| 553 | // Remove the rot.x rotation from M, so that the remaining |
---|
| 554 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 555 | // cannot occur. |
---|
| 556 | // |
---|
| 557 | |
---|
| 558 | Matrix44<T> N; |
---|
| 559 | N.rotate (Vec3<T> (-rot.x, 0, 0)); |
---|
| 560 | N = N * M; |
---|
| 561 | |
---|
| 562 | // |
---|
| 563 | // Extract the other two angles, rot.y and rot.z, from N. |
---|
| 564 | // |
---|
| 565 | |
---|
| 566 | T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]); |
---|
| 567 | rot.y = Math<T>::atan2 (-N[0][2], cy); |
---|
| 568 | rot.z = Math<T>::atan2 (-N[1][0], N[1][1]); |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | template <class T> |
---|
| 573 | void |
---|
| 574 | extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot) |
---|
| 575 | { |
---|
| 576 | // |
---|
| 577 | // Normalize the local x, y and z axes to remove scaling. |
---|
| 578 | // |
---|
| 579 | |
---|
| 580 | Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]); |
---|
| 581 | Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]); |
---|
| 582 | Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]); |
---|
| 583 | |
---|
| 584 | i.normalize(); |
---|
| 585 | j.normalize(); |
---|
| 586 | k.normalize(); |
---|
| 587 | |
---|
| 588 | Matrix44<T> M (i[0], i[1], i[2], 0, |
---|
| 589 | j[0], j[1], j[2], 0, |
---|
| 590 | k[0], k[1], k[2], 0, |
---|
| 591 | 0, 0, 0, 1); |
---|
| 592 | |
---|
| 593 | // |
---|
| 594 | // Extract the first angle, rot.x. |
---|
| 595 | // |
---|
| 596 | |
---|
| 597 | rot.x = -Math<T>::atan2 (M[1][0], M[0][0]); |
---|
| 598 | |
---|
| 599 | // |
---|
| 600 | // Remove the x rotation from M, so that the remaining |
---|
| 601 | // rotation, N, is only around two axes, and gimbal lock |
---|
| 602 | // cannot occur. |
---|
| 603 | // |
---|
| 604 | |
---|
| 605 | Matrix44<T> N; |
---|
| 606 | N.rotate (Vec3<T> (0, 0, -rot.x)); |
---|
| 607 | N = N * M; |
---|
| 608 | |
---|
| 609 | // |
---|
| 610 | // Extract the other two angles, rot.y and rot.z, from N. |
---|
| 611 | // |
---|
| 612 | |
---|
| 613 | T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]); |
---|
| 614 | rot.y = -Math<T>::atan2 (-N[2][0], cy); |
---|
| 615 | rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]); |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | template <class T> |
---|
| 620 | Quat<T> |
---|
| 621 | extractQuat (const Matrix44<T> &mat) |
---|
| 622 | { |
---|
| 623 | Matrix44<T> rot; |
---|
| 624 | |
---|
| 625 | T tr, s; |
---|
| 626 | T q[4]; |
---|
| 627 | int i, j, k; |
---|
| 628 | Quat<T> quat; |
---|
| 629 | |
---|
| 630 | int nxt[3] = {1, 2, 0}; |
---|
| 631 | tr = mat[0][0] + mat[1][1] + mat[2][2]; |
---|
| 632 | |
---|
| 633 | // check the diagonal |
---|
| 634 | if (tr > 0.0) { |
---|
| 635 | s = Math<T>::sqrt (tr + 1.0); |
---|
| 636 | quat.r = s / 2.0; |
---|
| 637 | s = 0.5 / s; |
---|
| 638 | |
---|
| 639 | quat.v.x = (mat[1][2] - mat[2][1]) * s; |
---|
| 640 | quat.v.y = (mat[2][0] - mat[0][2]) * s; |
---|
| 641 | quat.v.z = (mat[0][1] - mat[1][0]) * s; |
---|
| 642 | } |
---|
| 643 | else { |
---|
| 644 | // diagonal is negative |
---|
| 645 | i = 0; |
---|
| 646 | if (mat[1][1] > mat[0][0]) |
---|
| 647 | i=1; |
---|
| 648 | if (mat[2][2] > mat[i][i]) |
---|
| 649 | i=2; |
---|
| 650 | |
---|
| 651 | j = nxt[i]; |
---|
| 652 | k = nxt[j]; |
---|
| 653 | s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + 1.0); |
---|
| 654 | |
---|
| 655 | q[i] = s * 0.5; |
---|
| 656 | if (s != 0.0) |
---|
| 657 | s = 0.5 / s; |
---|
| 658 | |
---|
| 659 | q[3] = (mat[j][k] - mat[k][j]) * s; |
---|
| 660 | q[j] = (mat[i][j] + mat[j][i]) * s; |
---|
| 661 | q[k] = (mat[i][k] + mat[k][i]) * s; |
---|
| 662 | |
---|
| 663 | quat.v.x = q[0]; |
---|
| 664 | quat.v.y = q[1]; |
---|
| 665 | quat.v.z = q[2]; |
---|
| 666 | quat.r = q[3]; |
---|
| 667 | } |
---|
| 668 | |
---|
| 669 | return quat; |
---|
| 670 | } |
---|
| 671 | |
---|
| 672 | template <class T> |
---|
| 673 | bool |
---|
| 674 | extractSHRT (const Matrix44<T> &mat, |
---|
| 675 | Vec3<T> &s, |
---|
| 676 | Vec3<T> &h, |
---|
| 677 | Vec3<T> &r, |
---|
| 678 | Vec3<T> &t, |
---|
| 679 | bool exc /* = true */ , |
---|
| 680 | typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ ) |
---|
| 681 | { |
---|
| 682 | Matrix44<T> rot; |
---|
| 683 | |
---|
| 684 | rot = mat; |
---|
| 685 | if (! extractAndRemoveScalingAndShear (rot, s, h, exc)) |
---|
| 686 | return false; |
---|
| 687 | |
---|
| 688 | extractEulerXYZ (rot, r); |
---|
| 689 | |
---|
| 690 | t.x = mat[3][0]; |
---|
| 691 | t.y = mat[3][1]; |
---|
| 692 | t.z = mat[3][2]; |
---|
| 693 | |
---|
| 694 | if (rOrder != Euler<T>::XYZ) |
---|
| 695 | { |
---|
| 696 | Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ); |
---|
| 697 | Imath::Euler<T> e (eXYZ, rOrder); |
---|
| 698 | r = e.toXYZVector (); |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | return true; |
---|
| 702 | } |
---|
| 703 | |
---|
| 704 | template <class T> |
---|
| 705 | bool |
---|
| 706 | extractSHRT (const Matrix44<T> &mat, |
---|
| 707 | Vec3<T> &s, |
---|
| 708 | Vec3<T> &h, |
---|
| 709 | Vec3<T> &r, |
---|
| 710 | Vec3<T> &t, |
---|
| 711 | bool exc) |
---|
| 712 | { |
---|
| 713 | return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ); |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | template <class T> |
---|
| 717 | bool |
---|
| 718 | extractSHRT (const Matrix44<T> &mat, |
---|
| 719 | Vec3<T> &s, |
---|
| 720 | Vec3<T> &h, |
---|
| 721 | Euler<T> &r, |
---|
| 722 | Vec3<T> &t, |
---|
| 723 | bool exc /* = true */) |
---|
| 724 | { |
---|
| 725 | return extractSHRT (mat, s, h, r, t, exc, r.order ()); |
---|
| 726 | } |
---|
| 727 | |
---|
| 728 | |
---|
| 729 | template <class T> |
---|
| 730 | bool |
---|
| 731 | checkForZeroScaleInRow (const T& scl, |
---|
| 732 | const Vec3<T> &row, |
---|
| 733 | bool exc /* = true */ ) |
---|
| 734 | { |
---|
| 735 | for (int i = 0; i < 3; i++) |
---|
| 736 | { |
---|
| 737 | if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl))) |
---|
| 738 | { |
---|
| 739 | if (exc) |
---|
| 740 | throw Imath::ZeroScaleExc ("Cannot remove zero scaling " |
---|
| 741 | "from matrix."); |
---|
| 742 | else |
---|
| 743 | return false; |
---|
| 744 | } |
---|
| 745 | } |
---|
| 746 | |
---|
| 747 | return true; |
---|
| 748 | } |
---|
| 749 | |
---|
| 750 | |
---|
| 751 | template <class T> |
---|
| 752 | Matrix44<T> |
---|
| 753 | rotationMatrix (const Vec3<T> &from, const Vec3<T> &to) |
---|
| 754 | { |
---|
| 755 | Quat<T> q; |
---|
| 756 | q.setRotation(from, to); |
---|
| 757 | return q.toMatrix44(); |
---|
| 758 | } |
---|
| 759 | |
---|
| 760 | |
---|
| 761 | template <class T> |
---|
| 762 | Matrix44<T> |
---|
| 763 | rotationMatrixWithUpDir (const Vec3<T> &fromDir, |
---|
| 764 | const Vec3<T> &toDir, |
---|
| 765 | const Vec3<T> &upDir) |
---|
| 766 | { |
---|
| 767 | // |
---|
| 768 | // The goal is to obtain a rotation matrix that takes |
---|
| 769 | // "fromDir" to "toDir". We do this in two steps and |
---|
| 770 | // compose the resulting rotation matrices; |
---|
| 771 | // (a) rotate "fromDir" into the z-axis |
---|
| 772 | // (b) rotate the z-axis into "toDir" |
---|
| 773 | // |
---|
| 774 | |
---|
| 775 | // The from direction must be non-zero; but we allow zero to and up dirs. |
---|
| 776 | if (fromDir.length () == 0) |
---|
| 777 | return Matrix44<T> (); |
---|
| 778 | |
---|
| 779 | else |
---|
| 780 | { |
---|
| 781 | Matrix44<T> zAxis2FromDir = alignZAxisWithTargetDir |
---|
| 782 | (fromDir, Vec3<T> (0, 1, 0)); |
---|
| 783 | |
---|
| 784 | Matrix44<T> fromDir2zAxis = zAxis2FromDir.transposed (); |
---|
| 785 | |
---|
| 786 | Matrix44<T> zAxis2ToDir = alignZAxisWithTargetDir (toDir, upDir); |
---|
| 787 | |
---|
| 788 | return fromDir2zAxis * zAxis2ToDir; |
---|
| 789 | } |
---|
| 790 | } |
---|
| 791 | |
---|
| 792 | |
---|
| 793 | template <class T> |
---|
| 794 | Matrix44<T> |
---|
| 795 | alignZAxisWithTargetDir (Vec3<T> targetDir, Vec3<T> upDir) |
---|
| 796 | { |
---|
| 797 | // |
---|
| 798 | // Ensure that the target direction is non-zero. |
---|
| 799 | // |
---|
| 800 | |
---|
| 801 | if ( targetDir.length () == 0 ) |
---|
| 802 | targetDir = Vec3<T> (0, 0, 1); |
---|
| 803 | |
---|
| 804 | // |
---|
| 805 | // Ensure that the up direction is non-zero. |
---|
| 806 | // |
---|
| 807 | |
---|
| 808 | if ( upDir.length () == 0 ) |
---|
| 809 | upDir = Vec3<T> (0, 1, 0); |
---|
| 810 | |
---|
| 811 | // |
---|
| 812 | // Check for degeneracies. If the upDir and targetDir are parallel |
---|
| 813 | // or opposite, then compute a new, arbitrary up direction that is |
---|
| 814 | // not parallel or opposite to the targetDir. |
---|
| 815 | // |
---|
| 816 | |
---|
| 817 | if (upDir.cross (targetDir).length () == 0) |
---|
| 818 | { |
---|
| 819 | upDir = targetDir.cross (Vec3<T> (1, 0, 0)); |
---|
| 820 | if (upDir.length() == 0) |
---|
| 821 | upDir = targetDir.cross(Vec3<T> (0, 0, 1)); |
---|
| 822 | } |
---|
| 823 | |
---|
| 824 | // |
---|
| 825 | // Compute the x-, y-, and z-axis vectors of the new coordinate system. |
---|
| 826 | // |
---|
| 827 | |
---|
| 828 | Vec3<T> targetPerpDir = upDir.cross (targetDir); |
---|
| 829 | Vec3<T> targetUpDir = targetDir.cross (targetPerpDir); |
---|
| 830 | |
---|
| 831 | // |
---|
| 832 | // Rotate the x-axis into targetPerpDir (row 0), |
---|
| 833 | // rotate the y-axis into targetUpDir (row 1), |
---|
| 834 | // rotate the z-axis into targetDir (row 2). |
---|
| 835 | // |
---|
| 836 | |
---|
| 837 | Vec3<T> row[3]; |
---|
| 838 | row[0] = targetPerpDir.normalized (); |
---|
| 839 | row[1] = targetUpDir .normalized (); |
---|
| 840 | row[2] = targetDir .normalized (); |
---|
| 841 | |
---|
| 842 | Matrix44<T> mat ( row[0][0], row[0][1], row[0][2], 0, |
---|
| 843 | row[1][0], row[1][1], row[1][2], 0, |
---|
| 844 | row[2][0], row[2][1], row[2][2], 0, |
---|
| 845 | 0, 0, 0, 1 ); |
---|
| 846 | |
---|
| 847 | return mat; |
---|
| 848 | } |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | |
---|
| 852 | //----------------------------------------------------------------------------- |
---|
| 853 | // Implementation for 3x3 Matrix |
---|
| 854 | //------------------------------ |
---|
| 855 | |
---|
| 856 | |
---|
| 857 | template <class T> |
---|
| 858 | bool |
---|
| 859 | extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc) |
---|
| 860 | { |
---|
| 861 | T shr; |
---|
| 862 | Matrix33<T> M (mat); |
---|
| 863 | |
---|
| 864 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 865 | return false; |
---|
| 866 | |
---|
| 867 | return true; |
---|
| 868 | } |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | template <class T> |
---|
| 872 | Matrix33<T> |
---|
| 873 | sansScaling (const Matrix33<T> &mat, bool exc) |
---|
| 874 | { |
---|
| 875 | Vec2<T> scl; |
---|
| 876 | T shr; |
---|
| 877 | T rot; |
---|
| 878 | Vec2<T> tran; |
---|
| 879 | |
---|
| 880 | if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
---|
| 881 | return mat; |
---|
| 882 | |
---|
| 883 | Matrix33<T> M; |
---|
| 884 | |
---|
| 885 | M.translate (tran); |
---|
| 886 | M.rotate (rot); |
---|
| 887 | M.shear (shr); |
---|
| 888 | |
---|
| 889 | return M; |
---|
| 890 | } |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | template <class T> |
---|
| 894 | bool |
---|
| 895 | removeScaling (Matrix33<T> &mat, bool exc) |
---|
| 896 | { |
---|
| 897 | Vec2<T> scl; |
---|
| 898 | T shr; |
---|
| 899 | T rot; |
---|
| 900 | Vec2<T> tran; |
---|
| 901 | |
---|
| 902 | if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
---|
| 903 | return false; |
---|
| 904 | |
---|
| 905 | mat.makeIdentity (); |
---|
| 906 | mat.translate (tran); |
---|
| 907 | mat.rotate (rot); |
---|
| 908 | mat.shear (shr); |
---|
| 909 | |
---|
| 910 | return true; |
---|
| 911 | } |
---|
| 912 | |
---|
| 913 | |
---|
| 914 | template <class T> |
---|
| 915 | bool |
---|
| 916 | extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc) |
---|
| 917 | { |
---|
| 918 | Matrix33<T> M (mat); |
---|
| 919 | |
---|
| 920 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 921 | return false; |
---|
| 922 | |
---|
| 923 | return true; |
---|
| 924 | } |
---|
| 925 | |
---|
| 926 | |
---|
| 927 | template <class T> |
---|
| 928 | Matrix33<T> |
---|
| 929 | sansScalingAndShear (const Matrix33<T> &mat, bool exc) |
---|
| 930 | { |
---|
| 931 | Vec2<T> scl; |
---|
| 932 | T shr; |
---|
| 933 | Matrix33<T> M (mat); |
---|
| 934 | |
---|
| 935 | if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
---|
| 936 | return mat; |
---|
| 937 | |
---|
| 938 | return M; |
---|
| 939 | } |
---|
| 940 | |
---|
| 941 | |
---|
| 942 | template <class T> |
---|
| 943 | bool |
---|
| 944 | removeScalingAndShear (Matrix33<T> &mat, bool exc) |
---|
| 945 | { |
---|
| 946 | Vec2<T> scl; |
---|
| 947 | T shr; |
---|
| 948 | |
---|
| 949 | if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc)) |
---|
| 950 | return false; |
---|
| 951 | |
---|
| 952 | return true; |
---|
| 953 | } |
---|
| 954 | |
---|
| 955 | template <class T> |
---|
| 956 | bool |
---|
| 957 | extractAndRemoveScalingAndShear (Matrix33<T> &mat, |
---|
| 958 | Vec2<T> &scl, T &shr, bool exc) |
---|
| 959 | { |
---|
| 960 | Vec2<T> row[2]; |
---|
| 961 | |
---|
| 962 | row[0] = Vec2<T> (mat[0][0], mat[0][1]); |
---|
| 963 | row[1] = Vec2<T> (mat[1][0], mat[1][1]); |
---|
| 964 | |
---|
| 965 | T maxVal = 0; |
---|
| 966 | for (int i=0; i < 2; i++) |
---|
| 967 | for (int j=0; j < 2; j++) |
---|
| 968 | if (Imath::abs (row[i][j]) > maxVal) |
---|
| 969 | maxVal = Imath::abs (row[i][j]); |
---|
| 970 | |
---|
| 971 | // |
---|
| 972 | // We normalize the 2x2 matrix here. |
---|
| 973 | // It was noticed that this can improve numerical stability significantly, |
---|
| 974 | // especially when many of the upper 2x2 matrix's coefficients are very |
---|
| 975 | // close to zero; we correct for this step at the end by multiplying the |
---|
| 976 | // scaling factors by maxVal at the end (shear and rotation are not |
---|
| 977 | // affected by the normalization). |
---|
| 978 | |
---|
| 979 | if (maxVal != 0) |
---|
| 980 | { |
---|
| 981 | for (int i=0; i < 2; i++) |
---|
| 982 | if (! checkForZeroScaleInRow (maxVal, row[i], exc)) |
---|
| 983 | return false; |
---|
| 984 | else |
---|
| 985 | row[i] /= maxVal; |
---|
| 986 | } |
---|
| 987 | |
---|
| 988 | // Compute X scale factor. |
---|
| 989 | scl.x = row[0].length (); |
---|
| 990 | if (! checkForZeroScaleInRow (scl.x, row[0], exc)) |
---|
| 991 | return false; |
---|
| 992 | |
---|
| 993 | // Normalize first row. |
---|
| 994 | row[0] /= scl.x; |
---|
| 995 | |
---|
| 996 | // An XY shear factor will shear the X coord. as the Y coord. changes. |
---|
| 997 | // There are 2 combinations (XY, YX), although we only extract the XY |
---|
| 998 | // shear factor because we can effect the an YX shear factor by |
---|
| 999 | // shearing in XY combined with rotations and scales. |
---|
| 1000 | // |
---|
| 1001 | // shear matrix < 1, YX, 0, |
---|
| 1002 | // XY, 1, 0, |
---|
| 1003 | // 0, 0, 1 > |
---|
| 1004 | |
---|
| 1005 | // Compute XY shear factor and make 2nd row orthogonal to 1st. |
---|
| 1006 | shr = row[0].dot (row[1]); |
---|
| 1007 | row[1] -= shr * row[0]; |
---|
| 1008 | |
---|
| 1009 | // Now, compute Y scale. |
---|
| 1010 | scl.y = row[1].length (); |
---|
| 1011 | if (! checkForZeroScaleInRow (scl.y, row[1], exc)) |
---|
| 1012 | return false; |
---|
| 1013 | |
---|
| 1014 | // Normalize 2nd row and correct the XY shear factor for Y scaling. |
---|
| 1015 | row[1] /= scl.y; |
---|
| 1016 | shr /= scl.y; |
---|
| 1017 | |
---|
| 1018 | // At this point, the upper 2x2 matrix in mat is orthonormal. |
---|
| 1019 | // Check for a coordinate system flip. If the determinant |
---|
| 1020 | // is -1, then flip the rotation matrix and adjust the scale(Y) |
---|
| 1021 | // and shear(XY) factors to compensate. |
---|
| 1022 | if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0) |
---|
| 1023 | { |
---|
| 1024 | row[1][0] *= -1; |
---|
| 1025 | row[1][1] *= -1; |
---|
| 1026 | scl[1] *= -1; |
---|
| 1027 | shr *= -1; |
---|
| 1028 | } |
---|
| 1029 | |
---|
| 1030 | // Copy over the orthonormal rows into the returned matrix. |
---|
| 1031 | // The upper 2x2 matrix in mat is now a rotation matrix. |
---|
| 1032 | for (int i=0; i < 2; i++) |
---|
| 1033 | { |
---|
| 1034 | mat[i][0] = row[i][0]; |
---|
| 1035 | mat[i][1] = row[i][1]; |
---|
| 1036 | } |
---|
| 1037 | |
---|
| 1038 | scl *= maxVal; |
---|
| 1039 | |
---|
| 1040 | return true; |
---|
| 1041 | } |
---|
| 1042 | |
---|
| 1043 | |
---|
| 1044 | template <class T> |
---|
| 1045 | void |
---|
| 1046 | extractEuler (const Matrix33<T> &mat, T &rot) |
---|
| 1047 | { |
---|
| 1048 | // |
---|
| 1049 | // Normalize the local x and y axes to remove scaling. |
---|
| 1050 | // |
---|
| 1051 | |
---|
| 1052 | Vec2<T> i (mat[0][0], mat[0][1]); |
---|
| 1053 | Vec2<T> j (mat[1][0], mat[1][1]); |
---|
| 1054 | |
---|
| 1055 | i.normalize(); |
---|
| 1056 | j.normalize(); |
---|
| 1057 | |
---|
| 1058 | // |
---|
| 1059 | // Extract the angle, rot. |
---|
| 1060 | // |
---|
| 1061 | |
---|
| 1062 | rot = - Math<T>::atan2 (j[0], i[0]); |
---|
| 1063 | } |
---|
| 1064 | |
---|
| 1065 | |
---|
| 1066 | template <class T> |
---|
| 1067 | bool |
---|
| 1068 | extractSHRT (const Matrix33<T> &mat, |
---|
| 1069 | Vec2<T> &s, |
---|
| 1070 | T &h, |
---|
| 1071 | T &r, |
---|
| 1072 | Vec2<T> &t, |
---|
| 1073 | bool exc) |
---|
| 1074 | { |
---|
| 1075 | Matrix33<T> rot; |
---|
| 1076 | |
---|
| 1077 | rot = mat; |
---|
| 1078 | if (! extractAndRemoveScalingAndShear (rot, s, h, exc)) |
---|
| 1079 | return false; |
---|
| 1080 | |
---|
| 1081 | extractEuler (rot, r); |
---|
| 1082 | |
---|
| 1083 | t.x = mat[2][0]; |
---|
| 1084 | t.y = mat[2][1]; |
---|
| 1085 | |
---|
| 1086 | return true; |
---|
| 1087 | } |
---|
| 1088 | |
---|
| 1089 | |
---|
| 1090 | template <class T> |
---|
| 1091 | bool |
---|
| 1092 | checkForZeroScaleInRow (const T& scl, |
---|
| 1093 | const Vec2<T> &row, |
---|
| 1094 | bool exc /* = true */ ) |
---|
| 1095 | { |
---|
| 1096 | for (int i = 0; i < 2; i++) |
---|
| 1097 | { |
---|
| 1098 | if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl))) |
---|
| 1099 | { |
---|
| 1100 | if (exc) |
---|
| 1101 | throw Imath::ZeroScaleExc ("Cannot remove zero scaling " |
---|
| 1102 | "from matrix."); |
---|
| 1103 | else |
---|
| 1104 | return false; |
---|
| 1105 | } |
---|
| 1106 | } |
---|
| 1107 | |
---|
| 1108 | return true; |
---|
| 1109 | } |
---|
| 1110 | |
---|
| 1111 | |
---|
| 1112 | } // namespace Imath |
---|
| 1113 | |
---|
| 1114 | #endif |
---|