[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHPLANE_H |
---|
| 38 | #define INCLUDED_IMATHPLANE_H |
---|
| 39 | |
---|
| 40 | //---------------------------------------------------------------------- |
---|
| 41 | // |
---|
| 42 | // template class Plane3 |
---|
| 43 | // |
---|
| 44 | // The Imath::Plane3<> class represents a half space, so the |
---|
| 45 | // normal may point either towards or away from origin. The |
---|
| 46 | // plane P can be represented by Imath::Plane3 as either p or -p |
---|
| 47 | // corresponding to the two half-spaces on either side of the |
---|
| 48 | // plane. Any function which computes a distance will return |
---|
| 49 | // either negative or positive values for the distance indicating |
---|
| 50 | // which half-space the point is in. Note that reflection, and |
---|
| 51 | // intersection functions will operate as expected. |
---|
| 52 | // |
---|
| 53 | //---------------------------------------------------------------------- |
---|
| 54 | |
---|
| 55 | #include <ImathVec.h> |
---|
| 56 | #include <ImathLine.h> |
---|
| 57 | |
---|
| 58 | namespace Imath { |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | template <class T> |
---|
| 62 | class Plane3 |
---|
| 63 | { |
---|
| 64 | public: |
---|
| 65 | |
---|
| 66 | Vec3<T> normal; |
---|
| 67 | T distance; |
---|
| 68 | |
---|
| 69 | Plane3() {} |
---|
| 70 | Plane3(const Vec3<T> &normal, T distance); |
---|
| 71 | Plane3(const Vec3<T> &point, const Vec3<T> &normal); |
---|
| 72 | Plane3(const Vec3<T> &point1, |
---|
| 73 | const Vec3<T> &point2, |
---|
| 74 | const Vec3<T> &point3); |
---|
| 75 | |
---|
| 76 | //---------------------- |
---|
| 77 | // Various set methods |
---|
| 78 | //---------------------- |
---|
| 79 | |
---|
| 80 | void set(const Vec3<T> &normal, |
---|
| 81 | T distance); |
---|
| 82 | |
---|
| 83 | void set(const Vec3<T> &point, |
---|
| 84 | const Vec3<T> &normal); |
---|
| 85 | |
---|
| 86 | void set(const Vec3<T> &point1, |
---|
| 87 | const Vec3<T> &point2, |
---|
| 88 | const Vec3<T> &point3 ); |
---|
| 89 | |
---|
| 90 | //---------------------- |
---|
| 91 | // Utilities |
---|
| 92 | //---------------------- |
---|
| 93 | |
---|
| 94 | bool intersect(const Line3<T> &line, |
---|
| 95 | Vec3<T> &intersection) const; |
---|
| 96 | |
---|
| 97 | bool intersectT(const Line3<T> &line, |
---|
| 98 | T ¶meter) const; |
---|
| 99 | |
---|
| 100 | T distanceTo(const Vec3<T> &) const; |
---|
| 101 | |
---|
| 102 | Vec3<T> reflectPoint(const Vec3<T> &) const; |
---|
| 103 | Vec3<T> reflectVector(const Vec3<T> &) const; |
---|
| 104 | }; |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | //-------------------- |
---|
| 108 | // Convenient typedefs |
---|
| 109 | //-------------------- |
---|
| 110 | |
---|
| 111 | typedef Plane3<float> Plane3f; |
---|
| 112 | typedef Plane3<double> Plane3d; |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | //--------------- |
---|
| 116 | // Implementation |
---|
| 117 | //--------------- |
---|
| 118 | |
---|
| 119 | template <class T> |
---|
| 120 | inline Plane3<T>::Plane3(const Vec3<T> &p0, |
---|
| 121 | const Vec3<T> &p1, |
---|
| 122 | const Vec3<T> &p2) |
---|
| 123 | { |
---|
| 124 | set(p0,p1,p2); |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | template <class T> |
---|
| 128 | inline Plane3<T>::Plane3(const Vec3<T> &n, T d) |
---|
| 129 | { |
---|
| 130 | set(n, d); |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | template <class T> |
---|
| 134 | inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n) |
---|
| 135 | { |
---|
| 136 | set(p, n); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | template <class T> |
---|
| 140 | inline void Plane3<T>::set(const Vec3<T>& point1, |
---|
| 141 | const Vec3<T>& point2, |
---|
| 142 | const Vec3<T>& point3) |
---|
| 143 | { |
---|
| 144 | normal = (point2 - point1) % (point3 - point1); |
---|
| 145 | normal.normalize(); |
---|
| 146 | distance = normal ^ point1; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | template <class T> |
---|
| 150 | inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n) |
---|
| 151 | { |
---|
| 152 | normal = n; |
---|
| 153 | normal.normalize(); |
---|
| 154 | distance = normal ^ point; |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | template <class T> |
---|
| 158 | inline void Plane3<T>::set(const Vec3<T>& n, T d) |
---|
| 159 | { |
---|
| 160 | normal = n; |
---|
| 161 | normal.normalize(); |
---|
| 162 | distance = d; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | template <class T> |
---|
| 166 | inline T Plane3<T>::distanceTo(const Vec3<T> &point) const |
---|
| 167 | { |
---|
| 168 | return (point ^ normal) - distance; |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | template <class T> |
---|
| 172 | inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const |
---|
| 173 | { |
---|
| 174 | return normal * distanceTo(point) * -2.0 + point; |
---|
| 175 | } |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | template <class T> |
---|
| 179 | inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const |
---|
| 180 | { |
---|
| 181 | return normal * (normal ^ v) * 2.0 - v; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | template <class T> |
---|
| 186 | inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const |
---|
| 187 | { |
---|
| 188 | T d = normal ^ line.dir; |
---|
| 189 | if ( d == 0.0 ) return false; |
---|
| 190 | T t = - ((normal ^ line.pos) - distance) / d; |
---|
| 191 | point = line(t); |
---|
| 192 | return true; |
---|
| 193 | } |
---|
| 194 | |
---|
| 195 | template <class T> |
---|
| 196 | inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const |
---|
| 197 | { |
---|
| 198 | T d = normal ^ line.dir; |
---|
| 199 | if ( d == 0.0 ) return false; |
---|
| 200 | t = - ((normal ^ line.pos) - distance) / d; |
---|
| 201 | return true; |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | template<class T> |
---|
| 205 | std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane) |
---|
| 206 | { |
---|
| 207 | return o << "(" << plane.normal << ", " << plane.distance |
---|
| 208 | << ")"; |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | template<class T> |
---|
| 212 | Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M) |
---|
| 213 | { |
---|
| 214 | // T |
---|
| 215 | // -1 |
---|
| 216 | // Could also compute M but that would suck. |
---|
| 217 | // |
---|
| 218 | |
---|
| 219 | Vec3<T> dir1 = Vec3<T> (1, 0, 0) % plane.normal; |
---|
| 220 | T dir1Len = dir1 ^ dir1; |
---|
| 221 | |
---|
| 222 | Vec3<T> tmp = Vec3<T> (0, 1, 0) % plane.normal; |
---|
| 223 | T tmpLen = tmp ^ tmp; |
---|
| 224 | |
---|
| 225 | if (tmpLen > dir1Len) |
---|
| 226 | { |
---|
| 227 | dir1 = tmp; |
---|
| 228 | dir1Len = tmpLen; |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | tmp = Vec3<T> (0, 0, 1) % plane.normal; |
---|
| 232 | tmpLen = tmp ^ tmp; |
---|
| 233 | |
---|
| 234 | if (tmpLen > dir1Len) |
---|
| 235 | { |
---|
| 236 | dir1 = tmp; |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | Vec3<T> dir2 = dir1 % plane.normal; |
---|
| 240 | Vec3<T> point = plane.distance * plane.normal; |
---|
| 241 | |
---|
| 242 | return Plane3<T> ( point * M, |
---|
| 243 | (point + dir2) * M, |
---|
| 244 | (point + dir1) * M ); |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | template<class T> |
---|
| 248 | Plane3<T> operator- (const Plane3<T> &plane) |
---|
| 249 | { |
---|
| 250 | return Plane3<T>(-plane.normal,-plane.distance); |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | } // namespace Imath |
---|
| 255 | |
---|
| 256 | #endif |
---|