1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHPLANE_H |
---|
38 | #define INCLUDED_IMATHPLANE_H |
---|
39 | |
---|
40 | //---------------------------------------------------------------------- |
---|
41 | // |
---|
42 | // template class Plane3 |
---|
43 | // |
---|
44 | // The Imath::Plane3<> class represents a half space, so the |
---|
45 | // normal may point either towards or away from origin. The |
---|
46 | // plane P can be represented by Imath::Plane3 as either p or -p |
---|
47 | // corresponding to the two half-spaces on either side of the |
---|
48 | // plane. Any function which computes a distance will return |
---|
49 | // either negative or positive values for the distance indicating |
---|
50 | // which half-space the point is in. Note that reflection, and |
---|
51 | // intersection functions will operate as expected. |
---|
52 | // |
---|
53 | //---------------------------------------------------------------------- |
---|
54 | |
---|
55 | #include <ImathVec.h> |
---|
56 | #include <ImathLine.h> |
---|
57 | |
---|
58 | namespace Imath { |
---|
59 | |
---|
60 | |
---|
61 | template <class T> |
---|
62 | class Plane3 |
---|
63 | { |
---|
64 | public: |
---|
65 | |
---|
66 | Vec3<T> normal; |
---|
67 | T distance; |
---|
68 | |
---|
69 | Plane3() {} |
---|
70 | Plane3(const Vec3<T> &normal, T distance); |
---|
71 | Plane3(const Vec3<T> &point, const Vec3<T> &normal); |
---|
72 | Plane3(const Vec3<T> &point1, |
---|
73 | const Vec3<T> &point2, |
---|
74 | const Vec3<T> &point3); |
---|
75 | |
---|
76 | //---------------------- |
---|
77 | // Various set methods |
---|
78 | //---------------------- |
---|
79 | |
---|
80 | void set(const Vec3<T> &normal, |
---|
81 | T distance); |
---|
82 | |
---|
83 | void set(const Vec3<T> &point, |
---|
84 | const Vec3<T> &normal); |
---|
85 | |
---|
86 | void set(const Vec3<T> &point1, |
---|
87 | const Vec3<T> &point2, |
---|
88 | const Vec3<T> &point3 ); |
---|
89 | |
---|
90 | //---------------------- |
---|
91 | // Utilities |
---|
92 | //---------------------- |
---|
93 | |
---|
94 | bool intersect(const Line3<T> &line, |
---|
95 | Vec3<T> &intersection) const; |
---|
96 | |
---|
97 | bool intersectT(const Line3<T> &line, |
---|
98 | T ¶meter) const; |
---|
99 | |
---|
100 | T distanceTo(const Vec3<T> &) const; |
---|
101 | |
---|
102 | Vec3<T> reflectPoint(const Vec3<T> &) const; |
---|
103 | Vec3<T> reflectVector(const Vec3<T> &) const; |
---|
104 | }; |
---|
105 | |
---|
106 | |
---|
107 | //-------------------- |
---|
108 | // Convenient typedefs |
---|
109 | //-------------------- |
---|
110 | |
---|
111 | typedef Plane3<float> Plane3f; |
---|
112 | typedef Plane3<double> Plane3d; |
---|
113 | |
---|
114 | |
---|
115 | //--------------- |
---|
116 | // Implementation |
---|
117 | //--------------- |
---|
118 | |
---|
119 | template <class T> |
---|
120 | inline Plane3<T>::Plane3(const Vec3<T> &p0, |
---|
121 | const Vec3<T> &p1, |
---|
122 | const Vec3<T> &p2) |
---|
123 | { |
---|
124 | set(p0,p1,p2); |
---|
125 | } |
---|
126 | |
---|
127 | template <class T> |
---|
128 | inline Plane3<T>::Plane3(const Vec3<T> &n, T d) |
---|
129 | { |
---|
130 | set(n, d); |
---|
131 | } |
---|
132 | |
---|
133 | template <class T> |
---|
134 | inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n) |
---|
135 | { |
---|
136 | set(p, n); |
---|
137 | } |
---|
138 | |
---|
139 | template <class T> |
---|
140 | inline void Plane3<T>::set(const Vec3<T>& point1, |
---|
141 | const Vec3<T>& point2, |
---|
142 | const Vec3<T>& point3) |
---|
143 | { |
---|
144 | normal = (point2 - point1) % (point3 - point1); |
---|
145 | normal.normalize(); |
---|
146 | distance = normal ^ point1; |
---|
147 | } |
---|
148 | |
---|
149 | template <class T> |
---|
150 | inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n) |
---|
151 | { |
---|
152 | normal = n; |
---|
153 | normal.normalize(); |
---|
154 | distance = normal ^ point; |
---|
155 | } |
---|
156 | |
---|
157 | template <class T> |
---|
158 | inline void Plane3<T>::set(const Vec3<T>& n, T d) |
---|
159 | { |
---|
160 | normal = n; |
---|
161 | normal.normalize(); |
---|
162 | distance = d; |
---|
163 | } |
---|
164 | |
---|
165 | template <class T> |
---|
166 | inline T Plane3<T>::distanceTo(const Vec3<T> &point) const |
---|
167 | { |
---|
168 | return (point ^ normal) - distance; |
---|
169 | } |
---|
170 | |
---|
171 | template <class T> |
---|
172 | inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const |
---|
173 | { |
---|
174 | return normal * distanceTo(point) * -2.0 + point; |
---|
175 | } |
---|
176 | |
---|
177 | |
---|
178 | template <class T> |
---|
179 | inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const |
---|
180 | { |
---|
181 | return normal * (normal ^ v) * 2.0 - v; |
---|
182 | } |
---|
183 | |
---|
184 | |
---|
185 | template <class T> |
---|
186 | inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const |
---|
187 | { |
---|
188 | T d = normal ^ line.dir; |
---|
189 | if ( d == 0.0 ) return false; |
---|
190 | T t = - ((normal ^ line.pos) - distance) / d; |
---|
191 | point = line(t); |
---|
192 | return true; |
---|
193 | } |
---|
194 | |
---|
195 | template <class T> |
---|
196 | inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const |
---|
197 | { |
---|
198 | T d = normal ^ line.dir; |
---|
199 | if ( d == 0.0 ) return false; |
---|
200 | t = - ((normal ^ line.pos) - distance) / d; |
---|
201 | return true; |
---|
202 | } |
---|
203 | |
---|
204 | template<class T> |
---|
205 | std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane) |
---|
206 | { |
---|
207 | return o << "(" << plane.normal << ", " << plane.distance |
---|
208 | << ")"; |
---|
209 | } |
---|
210 | |
---|
211 | template<class T> |
---|
212 | Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M) |
---|
213 | { |
---|
214 | // T |
---|
215 | // -1 |
---|
216 | // Could also compute M but that would suck. |
---|
217 | // |
---|
218 | |
---|
219 | Vec3<T> dir1 = Vec3<T> (1, 0, 0) % plane.normal; |
---|
220 | T dir1Len = dir1 ^ dir1; |
---|
221 | |
---|
222 | Vec3<T> tmp = Vec3<T> (0, 1, 0) % plane.normal; |
---|
223 | T tmpLen = tmp ^ tmp; |
---|
224 | |
---|
225 | if (tmpLen > dir1Len) |
---|
226 | { |
---|
227 | dir1 = tmp; |
---|
228 | dir1Len = tmpLen; |
---|
229 | } |
---|
230 | |
---|
231 | tmp = Vec3<T> (0, 0, 1) % plane.normal; |
---|
232 | tmpLen = tmp ^ tmp; |
---|
233 | |
---|
234 | if (tmpLen > dir1Len) |
---|
235 | { |
---|
236 | dir1 = tmp; |
---|
237 | } |
---|
238 | |
---|
239 | Vec3<T> dir2 = dir1 % plane.normal; |
---|
240 | Vec3<T> point = plane.distance * plane.normal; |
---|
241 | |
---|
242 | return Plane3<T> ( point * M, |
---|
243 | (point + dir2) * M, |
---|
244 | (point + dir1) * M ); |
---|
245 | } |
---|
246 | |
---|
247 | template<class T> |
---|
248 | Plane3<T> operator- (const Plane3<T> &plane) |
---|
249 | { |
---|
250 | return Plane3<T>(-plane.normal,-plane.distance); |
---|
251 | } |
---|
252 | |
---|
253 | |
---|
254 | } // namespace Imath |
---|
255 | |
---|
256 | #endif |
---|