[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHQUAT_H |
---|
| 38 | #define INCLUDED_IMATHQUAT_H |
---|
| 39 | |
---|
| 40 | //---------------------------------------------------------------------- |
---|
| 41 | // |
---|
| 42 | // template class Quat<T> |
---|
| 43 | // |
---|
| 44 | // "Quaternions came from Hamilton ... and have been an unmixed |
---|
| 45 | // evil to those who have touched them in any way. Vector is a |
---|
| 46 | // useless survival ... and has never been of the slightest use |
---|
| 47 | // to any creature." |
---|
| 48 | // |
---|
| 49 | // - Lord Kelvin |
---|
| 50 | // |
---|
| 51 | // This class implements the quaternion numerical type -- you |
---|
| 52 | // will probably want to use this class to represent orientations |
---|
| 53 | // in R3 and to convert between various euler angle reps. You |
---|
| 54 | // should probably use Imath::Euler<> for that. |
---|
| 55 | // |
---|
| 56 | //---------------------------------------------------------------------- |
---|
| 57 | |
---|
| 58 | #include <ImathExc.h> |
---|
| 59 | #include <ImathMatrix.h> |
---|
| 60 | |
---|
| 61 | #include <iostream> |
---|
| 62 | |
---|
| 63 | namespace Imath { |
---|
| 64 | |
---|
| 65 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
| 66 | // Disable MS VC++ warnings about conversion from double to float |
---|
| 67 | #pragma warning(disable:4244) |
---|
| 68 | #endif |
---|
| 69 | |
---|
| 70 | template <class T> |
---|
| 71 | class Quat; |
---|
| 72 | |
---|
| 73 | template<class T> |
---|
| 74 | Quat<T> slerp (const Quat<T> &q1,const Quat<T> &q2, T t); |
---|
| 75 | |
---|
| 76 | template<class T> |
---|
| 77 | Quat<T> squad (const Quat<T> &q1,const Quat<T> &q2, |
---|
| 78 | const Quat<T> &qa,const Quat<T> &qb, T t); |
---|
| 79 | |
---|
| 80 | template<class T> |
---|
| 81 | void intermediate (const Quat<T> &q0, const Quat<T> &q1, |
---|
| 82 | const Quat<T> &q2, const Quat<T> &q3, |
---|
| 83 | Quat<T> &qa, Quat<T> &qb); |
---|
| 84 | |
---|
| 85 | template <class T> |
---|
| 86 | class Quat |
---|
| 87 | { |
---|
| 88 | public: |
---|
| 89 | |
---|
| 90 | T r; // real part |
---|
| 91 | Vec3<T> v; // imaginary vector |
---|
| 92 | |
---|
| 93 | //----------------------------------------------------- |
---|
| 94 | // Constructors - default constructor is identity quat |
---|
| 95 | //----------------------------------------------------- |
---|
| 96 | |
---|
| 97 | Quat() : r(1), v(0,0,0) {} |
---|
| 98 | |
---|
| 99 | template <class S> |
---|
| 100 | Quat( const Quat<S>& q) : r(q.r), v(q.v) {} |
---|
| 101 | |
---|
| 102 | Quat( T s, T i, T j, T k ) : r(s), v(i,j,k) {} |
---|
| 103 | |
---|
| 104 | Quat( T s, Vec3<T> d ) : r(s), v(d) {} |
---|
| 105 | |
---|
| 106 | static Quat<T> identity() { return Quat<T>(); } |
---|
| 107 | |
---|
| 108 | //------------------------------------------------ |
---|
| 109 | // Basic Algebra - Operators and Methods |
---|
| 110 | // The operator return values are *NOT* normalized |
---|
| 111 | // |
---|
| 112 | // operator^ is 4D dot product |
---|
| 113 | // operator/ uses the inverse() quaternion |
---|
| 114 | // operator~ is conjugate -- if (S+V) is quat then |
---|
| 115 | // the conjugate (S+V)* == (S-V) |
---|
| 116 | // |
---|
| 117 | // some operators (*,/,*=,/=) treat the quat as |
---|
| 118 | // a 4D vector when one of the operands is scalar |
---|
| 119 | //------------------------------------------------ |
---|
| 120 | |
---|
| 121 | const Quat<T>& operator= (const Quat<T>&); |
---|
| 122 | const Quat<T>& operator*= (const Quat<T>&); |
---|
| 123 | const Quat<T>& operator*= (T); |
---|
| 124 | const Quat<T>& operator/= (const Quat<T>&); |
---|
| 125 | const Quat<T>& operator/= (T); |
---|
| 126 | const Quat<T>& operator+= (const Quat<T>&); |
---|
| 127 | const Quat<T>& operator-= (const Quat<T>&); |
---|
| 128 | T& operator[] (int index); // as 4D vector |
---|
| 129 | T operator[] (int index) const; |
---|
| 130 | |
---|
| 131 | template <class S> bool operator == (const Quat<S> &q) const; |
---|
| 132 | template <class S> bool operator != (const Quat<S> &q) const; |
---|
| 133 | |
---|
| 134 | Quat<T>& invert(); // this -> 1 / this |
---|
| 135 | Quat<T> inverse() const; |
---|
| 136 | Quat<T>& normalize(); // returns this |
---|
| 137 | Quat<T> normalized() const; |
---|
| 138 | T length() const; // in R4 |
---|
| 139 | |
---|
| 140 | //----------------------- |
---|
| 141 | // Rotation conversion |
---|
| 142 | //----------------------- |
---|
| 143 | |
---|
| 144 | Quat<T>& setAxisAngle(const Vec3<T>& axis, T radians); |
---|
| 145 | Quat<T>& setRotation(const Vec3<T>& fromDirection, |
---|
| 146 | const Vec3<T>& toDirection); |
---|
| 147 | |
---|
| 148 | T angle() const; |
---|
| 149 | Vec3<T> axis() const; |
---|
| 150 | |
---|
| 151 | Matrix33<T> toMatrix33() const; |
---|
| 152 | Matrix44<T> toMatrix44() const; |
---|
| 153 | |
---|
| 154 | Quat<T> log() const; |
---|
| 155 | Quat<T> exp() const; |
---|
| 156 | }; |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | //-------------------- |
---|
| 160 | // Convenient typedefs |
---|
| 161 | //-------------------- |
---|
| 162 | |
---|
| 163 | typedef Quat<float> Quatf; |
---|
| 164 | typedef Quat<double> Quatd; |
---|
| 165 | |
---|
| 166 | |
---|
| 167 | //--------------- |
---|
| 168 | // Implementation |
---|
| 169 | //--------------- |
---|
| 170 | |
---|
| 171 | template<class T> |
---|
| 172 | inline const Quat<T>& Quat<T>::operator= (const Quat<T>& q) |
---|
| 173 | { |
---|
| 174 | r = q.r; |
---|
| 175 | v = q.v; |
---|
| 176 | return *this; |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | template<class T> |
---|
| 180 | inline const Quat<T>& Quat<T>::operator*= (const Quat<T>& q) |
---|
| 181 | { |
---|
| 182 | T rtmp = r * q.r - (v ^ q.v); |
---|
| 183 | v = r * q.v + v * q.r + v % q.v; |
---|
| 184 | r = rtmp; |
---|
| 185 | return *this; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | template<class T> |
---|
| 189 | inline const Quat<T>& Quat<T>::operator*= (T t) |
---|
| 190 | { |
---|
| 191 | r *= t; |
---|
| 192 | v *= t; |
---|
| 193 | return *this; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | template<class T> |
---|
| 197 | inline const Quat<T>& Quat<T>::operator/= (const Quat<T>& q) |
---|
| 198 | { |
---|
| 199 | *this = *this * q.inverse(); |
---|
| 200 | return *this; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | template<class T> |
---|
| 204 | inline const Quat<T>& Quat<T>::operator/= (T t) |
---|
| 205 | { |
---|
| 206 | r /= t; |
---|
| 207 | v /= t; |
---|
| 208 | return *this; |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | template<class T> |
---|
| 212 | inline const Quat<T>& Quat<T>::operator+= (const Quat<T>& q) |
---|
| 213 | { |
---|
| 214 | r += q.r; |
---|
| 215 | v += q.v; |
---|
| 216 | return *this; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | template<class T> |
---|
| 220 | inline const Quat<T>& Quat<T>::operator-= (const Quat<T>& q) |
---|
| 221 | { |
---|
| 222 | r -= q.r; |
---|
| 223 | v -= q.v; |
---|
| 224 | return *this; |
---|
| 225 | } |
---|
| 226 | template<class T> |
---|
| 227 | inline T& Quat<T>::operator[] (int index) |
---|
| 228 | { |
---|
| 229 | return index ? v[index-1] : r; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | template<class T> |
---|
| 233 | inline T Quat<T>::operator[] (int index) const |
---|
| 234 | { |
---|
| 235 | return index ? v[index-1] : r; |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | template <class T> |
---|
| 239 | template <class S> |
---|
| 240 | inline bool |
---|
| 241 | Quat<T>::operator == (const Quat<S> &q) const |
---|
| 242 | { |
---|
| 243 | return r == q.r && v == q.v; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | template <class T> |
---|
| 247 | template <class S> |
---|
| 248 | inline bool |
---|
| 249 | Quat<T>::operator != (const Quat<S> &q) const |
---|
| 250 | { |
---|
| 251 | return r != q.r || v != q.v; |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | template<class T> |
---|
| 255 | inline T operator^ (const Quat<T>& q1,const Quat<T>& q2) |
---|
| 256 | { |
---|
| 257 | return q1.r * q2.r + (q1.v ^ q2.v); |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | template <class T> |
---|
| 261 | inline T Quat<T>::length() const |
---|
| 262 | { |
---|
| 263 | return Math<T>::sqrt( r * r + (v ^ v) ); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | template <class T> |
---|
| 267 | inline Quat<T>& Quat<T>::normalize() |
---|
| 268 | { |
---|
| 269 | if ( T l = length() ) { r /= l; v /= l; } |
---|
| 270 | else { r = 1; v = Vec3<T>(0); } |
---|
| 271 | return *this; |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | template <class T> |
---|
| 275 | inline Quat<T> Quat<T>::normalized() const |
---|
| 276 | { |
---|
| 277 | if ( T l = length() ) return Quat( r / l, v / l ); |
---|
| 278 | return Quat(); |
---|
| 279 | } |
---|
| 280 | |
---|
| 281 | template<class T> |
---|
| 282 | inline Quat<T> Quat<T>::inverse() const |
---|
| 283 | { |
---|
| 284 | // 1 Q* |
---|
| 285 | // - = ---- where Q* is conjugate (operator~) |
---|
| 286 | // Q Q* Q and (Q* Q) == Q ^ Q (4D dot) |
---|
| 287 | |
---|
| 288 | T qdot = *this ^ *this; |
---|
| 289 | return Quat( r / qdot, -v / qdot ); |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | template<class T> |
---|
| 293 | inline Quat<T>& Quat<T>::invert() |
---|
| 294 | { |
---|
| 295 | T qdot = (*this) ^ (*this); |
---|
| 296 | r /= qdot; |
---|
| 297 | v = -v / qdot; |
---|
| 298 | return *this; |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | template<class T> |
---|
| 302 | Quat<T> |
---|
| 303 | slerp(const Quat<T> &q1,const Quat<T> &q2, T t) |
---|
| 304 | { |
---|
| 305 | // |
---|
| 306 | // Spherical linear interpolation. |
---|
| 307 | // |
---|
| 308 | // NOTE: Assumes q1 and q2 are normalized and that 0 <= t <= 1. |
---|
| 309 | // |
---|
| 310 | // This method does *not* interpolate along the shortest arc |
---|
| 311 | // between q1 and q2. If you desire interpolation along the |
---|
| 312 | // shortest arc, then consider flipping the second quaternion |
---|
| 313 | // explicitly before calling slerp. The implementation of squad() |
---|
| 314 | // depends on a slerp() that interpolates as is, without the |
---|
| 315 | // automatic flipping. |
---|
| 316 | // |
---|
| 317 | |
---|
| 318 | T cosomega = q1 ^ q2; |
---|
| 319 | if (cosomega >= (T) 1.0) |
---|
| 320 | { |
---|
| 321 | // |
---|
| 322 | // Special case: q1 and q2 are the same, so just return one of them. |
---|
| 323 | // This also catches the case where cosomega is very slightly > 1.0 |
---|
| 324 | // |
---|
| 325 | |
---|
| 326 | return q1; |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | T sinomega = Math<T>::sqrt (1 - cosomega * cosomega); |
---|
| 330 | |
---|
| 331 | Quat<T> result; |
---|
| 332 | |
---|
| 333 | if (sinomega * limits<T>::max() > 1) |
---|
| 334 | { |
---|
| 335 | T omega = Math<T>::acos (cosomega); |
---|
| 336 | T s1 = Math<T>::sin ((1.0 - t) * omega) / sinomega; |
---|
| 337 | T s2 = Math<T>::sin (t * omega) / sinomega; |
---|
| 338 | |
---|
| 339 | result = s1 * q1 + s2 * q2; |
---|
| 340 | } |
---|
| 341 | else if (cosomega > 0) |
---|
| 342 | { |
---|
| 343 | // |
---|
| 344 | // omega == 0 |
---|
| 345 | // |
---|
| 346 | |
---|
| 347 | T s1 = 1.0 - t; |
---|
| 348 | T s2 = t; |
---|
| 349 | |
---|
| 350 | result = s1 * q1 + s2 * q2; |
---|
| 351 | } |
---|
| 352 | else |
---|
| 353 | { |
---|
| 354 | // |
---|
| 355 | // omega == -pi |
---|
| 356 | // |
---|
| 357 | |
---|
| 358 | result.v.x = - q1.v.y; |
---|
| 359 | result.v.y = q1.v.x; |
---|
| 360 | result.v.z = - q1.r; |
---|
| 361 | result.r = q1.v.z; |
---|
| 362 | |
---|
| 363 | T s1 = Math<T>::sin ((0.5 - t) * M_PI); |
---|
| 364 | T s2 = Math<T>::sin (t * M_PI); |
---|
| 365 | |
---|
| 366 | result = s1 * q1 + s2 * result; |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | return result; |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | template<class T> |
---|
| 373 | Quat<T> spline(const Quat<T> &q0, const Quat<T> &q1, |
---|
| 374 | const Quat<T> &q2, const Quat<T> &q3, |
---|
| 375 | T t) |
---|
| 376 | { |
---|
| 377 | // Spherical Cubic Spline Interpolation - |
---|
| 378 | // from Advanced Animation and Rendering |
---|
| 379 | // Techniques by Watt and Watt, Page 366: |
---|
| 380 | // A spherical curve is constructed using three |
---|
| 381 | // spherical linear interpolations of a quadrangle |
---|
| 382 | // of unit quaternions: q1, qa, qb, q2. |
---|
| 383 | // Given a set of quaternion keys: q0, q1, q2, q3, |
---|
| 384 | // this routine does the interpolation between |
---|
| 385 | // q1 and q2 by constructing two intermediate |
---|
| 386 | // quaternions: qa and qb. The qa and qb are |
---|
| 387 | // computed by the intermediate function to |
---|
| 388 | // guarantee the continuity of tangents across |
---|
| 389 | // adjacent cubic segments. The qa represents in-tangent |
---|
| 390 | // for q1 and the qb represents the out-tangent for q2. |
---|
| 391 | // |
---|
| 392 | // The q1 q2 is the cubic segment being interpolated. |
---|
| 393 | // The q0 is from the previous adjacent segment and q3 is |
---|
| 394 | // from the next adjacent segment. The q0 and q3 are used |
---|
| 395 | // in computing qa and qb. |
---|
| 396 | // |
---|
| 397 | |
---|
| 398 | Quat<T> qa = intermediate (q0, q1, q2); |
---|
| 399 | Quat<T> qb = intermediate (q1, q2, q3); |
---|
| 400 | Quat<T> result = squad(q1, qa, qb, q2, t); |
---|
| 401 | |
---|
| 402 | return result; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | template<class T> |
---|
| 406 | Quat<T> squad(const Quat<T> &q1, const Quat<T> &qa, |
---|
| 407 | const Quat<T> &qb, const Quat<T> &q2, |
---|
| 408 | T t) |
---|
| 409 | { |
---|
| 410 | // Spherical Quadrangle Interpolation - |
---|
| 411 | // from Advanced Animation and Rendering |
---|
| 412 | // Techniques by Watt and Watt, Page 366: |
---|
| 413 | // It constructs a spherical cubic interpolation as |
---|
| 414 | // a series of three spherical linear interpolations |
---|
| 415 | // of a quadrangle of unit quaternions. |
---|
| 416 | // |
---|
| 417 | |
---|
| 418 | Quat<T> r1 = slerp(q1, q2, t); |
---|
| 419 | Quat<T> r2 = slerp(qa, qb, t); |
---|
| 420 | Quat<T> result = slerp(r1, r2, 2*t*(1-t)); |
---|
| 421 | |
---|
| 422 | return result; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | template<class T> |
---|
| 426 | Quat<T> intermediate(const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2) |
---|
| 427 | { |
---|
| 428 | // From advanced Animation and Rendering |
---|
| 429 | // Techniques by Watt and Watt, Page 366: |
---|
| 430 | // computing the inner quadrangle |
---|
| 431 | // points (qa and qb) to guarantee tangent |
---|
| 432 | // continuity. |
---|
| 433 | // |
---|
| 434 | Quat<T> q1inv = q1.inverse(); |
---|
| 435 | Quat<T> c1 = q1inv*q2; |
---|
| 436 | Quat<T> c2 = q1inv*q0; |
---|
| 437 | Quat<T> c3 = (T) (-0.25) * (c2.log() + c1.log()); |
---|
| 438 | Quat<T> qa = q1 * c3.exp(); |
---|
| 439 | qa.normalize(); |
---|
| 440 | return qa; |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | template <class T> |
---|
| 444 | inline Quat<T> Quat<T>::log() const |
---|
| 445 | { |
---|
| 446 | // |
---|
| 447 | // For unit quaternion, from Advanced Animation and |
---|
| 448 | // Rendering Techniques by Watt and Watt, Page 366: |
---|
| 449 | // |
---|
| 450 | |
---|
| 451 | T theta = Math<T>::acos (std::min (r, (T) 1.0)); |
---|
| 452 | if (theta == 0) |
---|
| 453 | return Quat<T> (0, v); |
---|
| 454 | |
---|
| 455 | T sintheta = Math<T>::sin (theta); |
---|
| 456 | |
---|
| 457 | T k; |
---|
| 458 | if (abs (sintheta) < 1 && abs (theta) >= limits<T>::max() * abs (sintheta)) |
---|
| 459 | k = 0; |
---|
| 460 | else |
---|
| 461 | k = theta / sintheta; |
---|
| 462 | |
---|
| 463 | return Quat<T> ((T) 0, v.x * k, v.y * k, v.z * k); |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | template <class T> |
---|
| 467 | inline Quat<T> Quat<T>::exp() const |
---|
| 468 | { |
---|
| 469 | // |
---|
| 470 | // For pure quaternion (zero scalar part): |
---|
| 471 | // from Advanced Animation and Rendering |
---|
| 472 | // Techniques by Watt and Watt, Page 366: |
---|
| 473 | // |
---|
| 474 | |
---|
| 475 | T theta = v.length(); |
---|
| 476 | T sintheta = Math<T>::sin (theta); |
---|
| 477 | |
---|
| 478 | T k; |
---|
| 479 | if (abs (theta) < 1 && abs (sintheta) >= limits<T>::max() * abs (theta)) |
---|
| 480 | k = 0; |
---|
| 481 | else |
---|
| 482 | k = sintheta / theta; |
---|
| 483 | |
---|
| 484 | T costheta = Math<T>::cos (theta); |
---|
| 485 | |
---|
| 486 | return Quat<T> (costheta, v.x * k, v.y * k, v.z * k); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | template <class T> |
---|
| 490 | inline T Quat<T>::angle() const |
---|
| 491 | { |
---|
| 492 | return 2.0*Math<T>::acos(r); |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | template <class T> |
---|
| 496 | inline Vec3<T> Quat<T>::axis() const |
---|
| 497 | { |
---|
| 498 | return v.normalized(); |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | template <class T> |
---|
| 502 | inline Quat<T>& Quat<T>::setAxisAngle(const Vec3<T>& axis, T radians) |
---|
| 503 | { |
---|
| 504 | r = Math<T>::cos(radians/2); |
---|
| 505 | v = axis.normalized() * Math<T>::sin(radians/2); |
---|
| 506 | return *this; |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | |
---|
| 510 | template <class T> |
---|
| 511 | Quat<T>& |
---|
| 512 | Quat<T>::setRotation(const Vec3<T>& from, const Vec3<T>& to) |
---|
| 513 | { |
---|
| 514 | // |
---|
| 515 | // Ported from SbRotation |
---|
| 516 | // |
---|
| 517 | |
---|
| 518 | T cost = from.dot(to) / Math<T>::sqrt(from.dot(from) * to.dot(to)); |
---|
| 519 | |
---|
| 520 | // check for degeneracies |
---|
| 521 | if (cost > 0.99999) |
---|
| 522 | { |
---|
| 523 | // |
---|
| 524 | // Vectors are parallel. |
---|
| 525 | // |
---|
| 526 | |
---|
| 527 | r = 1.0; |
---|
| 528 | v = Vec3<T>(0); |
---|
| 529 | } |
---|
| 530 | else if (cost < -0.99999) |
---|
| 531 | { |
---|
| 532 | // |
---|
| 533 | // Vectors are opposite. Find an axis to rotate around, |
---|
| 534 | // which should be perpendicular to the original axis. |
---|
| 535 | // |
---|
| 536 | |
---|
| 537 | Vec3<T> frm = from.normalized(); |
---|
| 538 | v = frm.cross(Vec3<T>(1, 0, 0)); |
---|
| 539 | if (v.length() < 0.00001) |
---|
| 540 | v = frm.cross(Vec3<T>(0, 1, 0)); |
---|
| 541 | r = 0; |
---|
| 542 | v.normalize(); |
---|
| 543 | } |
---|
| 544 | else |
---|
| 545 | { |
---|
| 546 | // |
---|
| 547 | // Use half-angle formulae: |
---|
| 548 | // cos^2 t = ( 1 + cos (2t) ) / 2 |
---|
| 549 | // w part is cosine of half the rotation angle |
---|
| 550 | // |
---|
| 551 | |
---|
| 552 | r = Math<T>::sqrt(0.5 * (1.0 + cost)); |
---|
| 553 | |
---|
| 554 | // |
---|
| 555 | // sin^2 t = ( 1 - cos (2t) ) / 2 |
---|
| 556 | // Do the normalization of the axis vector at the same time so |
---|
| 557 | // we only call sqrt once. |
---|
| 558 | // |
---|
| 559 | |
---|
| 560 | v = from.cross(to); |
---|
| 561 | v *= Math<T>::sqrt((0.5 * (1.0 - cost))/(v.dot(v))); |
---|
| 562 | } |
---|
| 563 | |
---|
| 564 | return *this; |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | template<class T> |
---|
| 568 | Matrix33<T> Quat<T>::toMatrix33() const |
---|
| 569 | { |
---|
| 570 | return Matrix33<T>(1. - 2.0 * (v.y * v.y + v.z * v.z), |
---|
| 571 | 2.0 * (v.x * v.y + v.z * r), |
---|
| 572 | 2.0 * (v.z * v.x - v.y * r), |
---|
| 573 | |
---|
| 574 | 2.0 * (v.x * v.y - v.z * r), |
---|
| 575 | 1. - 2.0 * (v.z * v.z + v.x * v.x), |
---|
| 576 | 2.0 * (v.y * v.z + v.x * r), |
---|
| 577 | |
---|
| 578 | 2.0 * (v.z * v.x + v.y * r), |
---|
| 579 | 2.0 * (v.y * v.z - v.x * r), |
---|
| 580 | 1. - 2.0 * (v.y * v.y + v.x * v.x)); |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | template<class T> |
---|
| 584 | Matrix44<T> Quat<T>::toMatrix44() const |
---|
| 585 | { |
---|
| 586 | return Matrix44<T>(1. - 2.0 * (v.y * v.y + v.z * v.z), |
---|
| 587 | 2.0 * (v.x * v.y + v.z * r), |
---|
| 588 | 2.0 * (v.z * v.x - v.y * r), |
---|
| 589 | 0., |
---|
| 590 | 2.0 * (v.x * v.y - v.z * r), |
---|
| 591 | 1. - 2.0 * (v.z * v.z + v.x * v.x), |
---|
| 592 | 2.0 * (v.y * v.z + v.x * r), |
---|
| 593 | 0., |
---|
| 594 | 2.0 * (v.z * v.x + v.y * r), |
---|
| 595 | 2.0 * (v.y * v.z - v.x * r), |
---|
| 596 | 1. - 2.0 * (v.y * v.y + v.x * v.x), |
---|
| 597 | 0., |
---|
| 598 | 0., |
---|
| 599 | 0., |
---|
| 600 | 0., |
---|
| 601 | 1.0 ); |
---|
| 602 | } |
---|
| 603 | |
---|
| 604 | |
---|
| 605 | template<class T> |
---|
| 606 | inline Matrix33<T> operator* (const Matrix33<T> &M, const Quat<T> &q) |
---|
| 607 | { |
---|
| 608 | return M * q.toMatrix33(); |
---|
| 609 | } |
---|
| 610 | |
---|
| 611 | template<class T> |
---|
| 612 | inline Matrix33<T> operator* (const Quat<T> &q, const Matrix33<T> &M) |
---|
| 613 | { |
---|
| 614 | return q.toMatrix33() * M; |
---|
| 615 | } |
---|
| 616 | |
---|
| 617 | template<class T> |
---|
| 618 | std::ostream& operator<< (std::ostream &o, const Quat<T> &q) |
---|
| 619 | { |
---|
| 620 | return o << "(" << q.r |
---|
| 621 | << " " << q.v.x |
---|
| 622 | << " " << q.v.y |
---|
| 623 | << " " << q.v.z |
---|
| 624 | << ")"; |
---|
| 625 | |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | template<class T> |
---|
| 629 | inline Quat<T> operator* (const Quat<T>& q1, const Quat<T>& q2) |
---|
| 630 | { |
---|
| 631 | // (S1+V1) (S2+V2) = S1 S2 - V1.V2 + S1 V2 + V1 S2 + V1 x V2 |
---|
| 632 | return Quat<T>( q1.r * q2.r - (q1.v ^ q2.v), |
---|
| 633 | q1.r * q2.v + q1.v * q2.r + q1.v % q2.v ); |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | template<class T> |
---|
| 637 | inline Quat<T> operator/ (const Quat<T>& q1, const Quat<T>& q2) |
---|
| 638 | { |
---|
| 639 | return q1 * q2.inverse(); |
---|
| 640 | } |
---|
| 641 | |
---|
| 642 | template<class T> |
---|
| 643 | inline Quat<T> operator/ (const Quat<T>& q,T t) |
---|
| 644 | { |
---|
| 645 | return Quat<T>(q.r/t,q.v/t); |
---|
| 646 | } |
---|
| 647 | |
---|
| 648 | template<class T> |
---|
| 649 | inline Quat<T> operator* (const Quat<T>& q,T t) |
---|
| 650 | { |
---|
| 651 | return Quat<T>(q.r*t,q.v*t); |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | template<class T> |
---|
| 655 | inline Quat<T> operator* (T t, const Quat<T>& q) |
---|
| 656 | { |
---|
| 657 | return Quat<T>(q.r*t,q.v*t); |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | template<class T> |
---|
| 661 | inline Quat<T> operator+ (const Quat<T>& q1, const Quat<T>& q2) |
---|
| 662 | { |
---|
| 663 | return Quat<T>( q1.r + q2.r, q1.v + q2.v ); |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | template<class T> |
---|
| 667 | inline Quat<T> operator- (const Quat<T>& q1, const Quat<T>& q2) |
---|
| 668 | { |
---|
| 669 | return Quat<T>( q1.r - q2.r, q1.v - q2.v ); |
---|
| 670 | } |
---|
| 671 | |
---|
| 672 | template<class T> |
---|
| 673 | inline Quat<T> operator~ (const Quat<T>& q) |
---|
| 674 | { |
---|
| 675 | return Quat<T>( q.r, -q.v ); // conjugate: (S+V)* = S-V |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | template<class T> |
---|
| 679 | inline Quat<T> operator- (const Quat<T>& q) |
---|
| 680 | { |
---|
| 681 | return Quat<T>( -q.r, -q.v ); |
---|
| 682 | } |
---|
| 683 | |
---|
| 684 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
| 685 | #pragma warning(default:4244) |
---|
| 686 | #endif |
---|
| 687 | |
---|
| 688 | } // namespace Imath |
---|
| 689 | |
---|
| 690 | #endif |
---|