1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | #ifndef INCLUDED_IMATHQUAT_H |
---|
38 | #define INCLUDED_IMATHQUAT_H |
---|
39 | |
---|
40 | //---------------------------------------------------------------------- |
---|
41 | // |
---|
42 | // template class Quat<T> |
---|
43 | // |
---|
44 | // "Quaternions came from Hamilton ... and have been an unmixed |
---|
45 | // evil to those who have touched them in any way. Vector is a |
---|
46 | // useless survival ... and has never been of the slightest use |
---|
47 | // to any creature." |
---|
48 | // |
---|
49 | // - Lord Kelvin |
---|
50 | // |
---|
51 | // This class implements the quaternion numerical type -- you |
---|
52 | // will probably want to use this class to represent orientations |
---|
53 | // in R3 and to convert between various euler angle reps. You |
---|
54 | // should probably use Imath::Euler<> for that. |
---|
55 | // |
---|
56 | //---------------------------------------------------------------------- |
---|
57 | |
---|
58 | #include <ImathExc.h> |
---|
59 | #include <ImathMatrix.h> |
---|
60 | |
---|
61 | #include <iostream> |
---|
62 | |
---|
63 | namespace Imath { |
---|
64 | |
---|
65 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
66 | // Disable MS VC++ warnings about conversion from double to float |
---|
67 | #pragma warning(disable:4244) |
---|
68 | #endif |
---|
69 | |
---|
70 | template <class T> |
---|
71 | class Quat; |
---|
72 | |
---|
73 | template<class T> |
---|
74 | Quat<T> slerp (const Quat<T> &q1,const Quat<T> &q2, T t); |
---|
75 | |
---|
76 | template<class T> |
---|
77 | Quat<T> squad (const Quat<T> &q1,const Quat<T> &q2, |
---|
78 | const Quat<T> &qa,const Quat<T> &qb, T t); |
---|
79 | |
---|
80 | template<class T> |
---|
81 | void intermediate (const Quat<T> &q0, const Quat<T> &q1, |
---|
82 | const Quat<T> &q2, const Quat<T> &q3, |
---|
83 | Quat<T> &qa, Quat<T> &qb); |
---|
84 | |
---|
85 | template <class T> |
---|
86 | class Quat |
---|
87 | { |
---|
88 | public: |
---|
89 | |
---|
90 | T r; // real part |
---|
91 | Vec3<T> v; // imaginary vector |
---|
92 | |
---|
93 | //----------------------------------------------------- |
---|
94 | // Constructors - default constructor is identity quat |
---|
95 | //----------------------------------------------------- |
---|
96 | |
---|
97 | Quat() : r(1), v(0,0,0) {} |
---|
98 | |
---|
99 | template <class S> |
---|
100 | Quat( const Quat<S>& q) : r(q.r), v(q.v) {} |
---|
101 | |
---|
102 | Quat( T s, T i, T j, T k ) : r(s), v(i,j,k) {} |
---|
103 | |
---|
104 | Quat( T s, Vec3<T> d ) : r(s), v(d) {} |
---|
105 | |
---|
106 | static Quat<T> identity() { return Quat<T>(); } |
---|
107 | |
---|
108 | //------------------------------------------------ |
---|
109 | // Basic Algebra - Operators and Methods |
---|
110 | // The operator return values are *NOT* normalized |
---|
111 | // |
---|
112 | // operator^ is 4D dot product |
---|
113 | // operator/ uses the inverse() quaternion |
---|
114 | // operator~ is conjugate -- if (S+V) is quat then |
---|
115 | // the conjugate (S+V)* == (S-V) |
---|
116 | // |
---|
117 | // some operators (*,/,*=,/=) treat the quat as |
---|
118 | // a 4D vector when one of the operands is scalar |
---|
119 | //------------------------------------------------ |
---|
120 | |
---|
121 | const Quat<T>& operator= (const Quat<T>&); |
---|
122 | const Quat<T>& operator*= (const Quat<T>&); |
---|
123 | const Quat<T>& operator*= (T); |
---|
124 | const Quat<T>& operator/= (const Quat<T>&); |
---|
125 | const Quat<T>& operator/= (T); |
---|
126 | const Quat<T>& operator+= (const Quat<T>&); |
---|
127 | const Quat<T>& operator-= (const Quat<T>&); |
---|
128 | T& operator[] (int index); // as 4D vector |
---|
129 | T operator[] (int index) const; |
---|
130 | |
---|
131 | template <class S> bool operator == (const Quat<S> &q) const; |
---|
132 | template <class S> bool operator != (const Quat<S> &q) const; |
---|
133 | |
---|
134 | Quat<T>& invert(); // this -> 1 / this |
---|
135 | Quat<T> inverse() const; |
---|
136 | Quat<T>& normalize(); // returns this |
---|
137 | Quat<T> normalized() const; |
---|
138 | T length() const; // in R4 |
---|
139 | |
---|
140 | //----------------------- |
---|
141 | // Rotation conversion |
---|
142 | //----------------------- |
---|
143 | |
---|
144 | Quat<T>& setAxisAngle(const Vec3<T>& axis, T radians); |
---|
145 | Quat<T>& setRotation(const Vec3<T>& fromDirection, |
---|
146 | const Vec3<T>& toDirection); |
---|
147 | |
---|
148 | T angle() const; |
---|
149 | Vec3<T> axis() const; |
---|
150 | |
---|
151 | Matrix33<T> toMatrix33() const; |
---|
152 | Matrix44<T> toMatrix44() const; |
---|
153 | |
---|
154 | Quat<T> log() const; |
---|
155 | Quat<T> exp() const; |
---|
156 | }; |
---|
157 | |
---|
158 | |
---|
159 | //-------------------- |
---|
160 | // Convenient typedefs |
---|
161 | //-------------------- |
---|
162 | |
---|
163 | typedef Quat<float> Quatf; |
---|
164 | typedef Quat<double> Quatd; |
---|
165 | |
---|
166 | |
---|
167 | //--------------- |
---|
168 | // Implementation |
---|
169 | //--------------- |
---|
170 | |
---|
171 | template<class T> |
---|
172 | inline const Quat<T>& Quat<T>::operator= (const Quat<T>& q) |
---|
173 | { |
---|
174 | r = q.r; |
---|
175 | v = q.v; |
---|
176 | return *this; |
---|
177 | } |
---|
178 | |
---|
179 | template<class T> |
---|
180 | inline const Quat<T>& Quat<T>::operator*= (const Quat<T>& q) |
---|
181 | { |
---|
182 | T rtmp = r * q.r - (v ^ q.v); |
---|
183 | v = r * q.v + v * q.r + v % q.v; |
---|
184 | r = rtmp; |
---|
185 | return *this; |
---|
186 | } |
---|
187 | |
---|
188 | template<class T> |
---|
189 | inline const Quat<T>& Quat<T>::operator*= (T t) |
---|
190 | { |
---|
191 | r *= t; |
---|
192 | v *= t; |
---|
193 | return *this; |
---|
194 | } |
---|
195 | |
---|
196 | template<class T> |
---|
197 | inline const Quat<T>& Quat<T>::operator/= (const Quat<T>& q) |
---|
198 | { |
---|
199 | *this = *this * q.inverse(); |
---|
200 | return *this; |
---|
201 | } |
---|
202 | |
---|
203 | template<class T> |
---|
204 | inline const Quat<T>& Quat<T>::operator/= (T t) |
---|
205 | { |
---|
206 | r /= t; |
---|
207 | v /= t; |
---|
208 | return *this; |
---|
209 | } |
---|
210 | |
---|
211 | template<class T> |
---|
212 | inline const Quat<T>& Quat<T>::operator+= (const Quat<T>& q) |
---|
213 | { |
---|
214 | r += q.r; |
---|
215 | v += q.v; |
---|
216 | return *this; |
---|
217 | } |
---|
218 | |
---|
219 | template<class T> |
---|
220 | inline const Quat<T>& Quat<T>::operator-= (const Quat<T>& q) |
---|
221 | { |
---|
222 | r -= q.r; |
---|
223 | v -= q.v; |
---|
224 | return *this; |
---|
225 | } |
---|
226 | template<class T> |
---|
227 | inline T& Quat<T>::operator[] (int index) |
---|
228 | { |
---|
229 | return index ? v[index-1] : r; |
---|
230 | } |
---|
231 | |
---|
232 | template<class T> |
---|
233 | inline T Quat<T>::operator[] (int index) const |
---|
234 | { |
---|
235 | return index ? v[index-1] : r; |
---|
236 | } |
---|
237 | |
---|
238 | template <class T> |
---|
239 | template <class S> |
---|
240 | inline bool |
---|
241 | Quat<T>::operator == (const Quat<S> &q) const |
---|
242 | { |
---|
243 | return r == q.r && v == q.v; |
---|
244 | } |
---|
245 | |
---|
246 | template <class T> |
---|
247 | template <class S> |
---|
248 | inline bool |
---|
249 | Quat<T>::operator != (const Quat<S> &q) const |
---|
250 | { |
---|
251 | return r != q.r || v != q.v; |
---|
252 | } |
---|
253 | |
---|
254 | template<class T> |
---|
255 | inline T operator^ (const Quat<T>& q1,const Quat<T>& q2) |
---|
256 | { |
---|
257 | return q1.r * q2.r + (q1.v ^ q2.v); |
---|
258 | } |
---|
259 | |
---|
260 | template <class T> |
---|
261 | inline T Quat<T>::length() const |
---|
262 | { |
---|
263 | return Math<T>::sqrt( r * r + (v ^ v) ); |
---|
264 | } |
---|
265 | |
---|
266 | template <class T> |
---|
267 | inline Quat<T>& Quat<T>::normalize() |
---|
268 | { |
---|
269 | if ( T l = length() ) { r /= l; v /= l; } |
---|
270 | else { r = 1; v = Vec3<T>(0); } |
---|
271 | return *this; |
---|
272 | } |
---|
273 | |
---|
274 | template <class T> |
---|
275 | inline Quat<T> Quat<T>::normalized() const |
---|
276 | { |
---|
277 | if ( T l = length() ) return Quat( r / l, v / l ); |
---|
278 | return Quat(); |
---|
279 | } |
---|
280 | |
---|
281 | template<class T> |
---|
282 | inline Quat<T> Quat<T>::inverse() const |
---|
283 | { |
---|
284 | // 1 Q* |
---|
285 | // - = ---- where Q* is conjugate (operator~) |
---|
286 | // Q Q* Q and (Q* Q) == Q ^ Q (4D dot) |
---|
287 | |
---|
288 | T qdot = *this ^ *this; |
---|
289 | return Quat( r / qdot, -v / qdot ); |
---|
290 | } |
---|
291 | |
---|
292 | template<class T> |
---|
293 | inline Quat<T>& Quat<T>::invert() |
---|
294 | { |
---|
295 | T qdot = (*this) ^ (*this); |
---|
296 | r /= qdot; |
---|
297 | v = -v / qdot; |
---|
298 | return *this; |
---|
299 | } |
---|
300 | |
---|
301 | template<class T> |
---|
302 | Quat<T> |
---|
303 | slerp(const Quat<T> &q1,const Quat<T> &q2, T t) |
---|
304 | { |
---|
305 | // |
---|
306 | // Spherical linear interpolation. |
---|
307 | // |
---|
308 | // NOTE: Assumes q1 and q2 are normalized and that 0 <= t <= 1. |
---|
309 | // |
---|
310 | // This method does *not* interpolate along the shortest arc |
---|
311 | // between q1 and q2. If you desire interpolation along the |
---|
312 | // shortest arc, then consider flipping the second quaternion |
---|
313 | // explicitly before calling slerp. The implementation of squad() |
---|
314 | // depends on a slerp() that interpolates as is, without the |
---|
315 | // automatic flipping. |
---|
316 | // |
---|
317 | |
---|
318 | T cosomega = q1 ^ q2; |
---|
319 | if (cosomega >= (T) 1.0) |
---|
320 | { |
---|
321 | // |
---|
322 | // Special case: q1 and q2 are the same, so just return one of them. |
---|
323 | // This also catches the case where cosomega is very slightly > 1.0 |
---|
324 | // |
---|
325 | |
---|
326 | return q1; |
---|
327 | } |
---|
328 | |
---|
329 | T sinomega = Math<T>::sqrt (1 - cosomega * cosomega); |
---|
330 | |
---|
331 | Quat<T> result; |
---|
332 | |
---|
333 | if (sinomega * limits<T>::max() > 1) |
---|
334 | { |
---|
335 | T omega = Math<T>::acos (cosomega); |
---|
336 | T s1 = Math<T>::sin ((1.0 - t) * omega) / sinomega; |
---|
337 | T s2 = Math<T>::sin (t * omega) / sinomega; |
---|
338 | |
---|
339 | result = s1 * q1 + s2 * q2; |
---|
340 | } |
---|
341 | else if (cosomega > 0) |
---|
342 | { |
---|
343 | // |
---|
344 | // omega == 0 |
---|
345 | // |
---|
346 | |
---|
347 | T s1 = 1.0 - t; |
---|
348 | T s2 = t; |
---|
349 | |
---|
350 | result = s1 * q1 + s2 * q2; |
---|
351 | } |
---|
352 | else |
---|
353 | { |
---|
354 | // |
---|
355 | // omega == -pi |
---|
356 | // |
---|
357 | |
---|
358 | result.v.x = - q1.v.y; |
---|
359 | result.v.y = q1.v.x; |
---|
360 | result.v.z = - q1.r; |
---|
361 | result.r = q1.v.z; |
---|
362 | |
---|
363 | T s1 = Math<T>::sin ((0.5 - t) * M_PI); |
---|
364 | T s2 = Math<T>::sin (t * M_PI); |
---|
365 | |
---|
366 | result = s1 * q1 + s2 * result; |
---|
367 | } |
---|
368 | |
---|
369 | return result; |
---|
370 | } |
---|
371 | |
---|
372 | template<class T> |
---|
373 | Quat<T> spline(const Quat<T> &q0, const Quat<T> &q1, |
---|
374 | const Quat<T> &q2, const Quat<T> &q3, |
---|
375 | T t) |
---|
376 | { |
---|
377 | // Spherical Cubic Spline Interpolation - |
---|
378 | // from Advanced Animation and Rendering |
---|
379 | // Techniques by Watt and Watt, Page 366: |
---|
380 | // A spherical curve is constructed using three |
---|
381 | // spherical linear interpolations of a quadrangle |
---|
382 | // of unit quaternions: q1, qa, qb, q2. |
---|
383 | // Given a set of quaternion keys: q0, q1, q2, q3, |
---|
384 | // this routine does the interpolation between |
---|
385 | // q1 and q2 by constructing two intermediate |
---|
386 | // quaternions: qa and qb. The qa and qb are |
---|
387 | // computed by the intermediate function to |
---|
388 | // guarantee the continuity of tangents across |
---|
389 | // adjacent cubic segments. The qa represents in-tangent |
---|
390 | // for q1 and the qb represents the out-tangent for q2. |
---|
391 | // |
---|
392 | // The q1 q2 is the cubic segment being interpolated. |
---|
393 | // The q0 is from the previous adjacent segment and q3 is |
---|
394 | // from the next adjacent segment. The q0 and q3 are used |
---|
395 | // in computing qa and qb. |
---|
396 | // |
---|
397 | |
---|
398 | Quat<T> qa = intermediate (q0, q1, q2); |
---|
399 | Quat<T> qb = intermediate (q1, q2, q3); |
---|
400 | Quat<T> result = squad(q1, qa, qb, q2, t); |
---|
401 | |
---|
402 | return result; |
---|
403 | } |
---|
404 | |
---|
405 | template<class T> |
---|
406 | Quat<T> squad(const Quat<T> &q1, const Quat<T> &qa, |
---|
407 | const Quat<T> &qb, const Quat<T> &q2, |
---|
408 | T t) |
---|
409 | { |
---|
410 | // Spherical Quadrangle Interpolation - |
---|
411 | // from Advanced Animation and Rendering |
---|
412 | // Techniques by Watt and Watt, Page 366: |
---|
413 | // It constructs a spherical cubic interpolation as |
---|
414 | // a series of three spherical linear interpolations |
---|
415 | // of a quadrangle of unit quaternions. |
---|
416 | // |
---|
417 | |
---|
418 | Quat<T> r1 = slerp(q1, q2, t); |
---|
419 | Quat<T> r2 = slerp(qa, qb, t); |
---|
420 | Quat<T> result = slerp(r1, r2, 2*t*(1-t)); |
---|
421 | |
---|
422 | return result; |
---|
423 | } |
---|
424 | |
---|
425 | template<class T> |
---|
426 | Quat<T> intermediate(const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2) |
---|
427 | { |
---|
428 | // From advanced Animation and Rendering |
---|
429 | // Techniques by Watt and Watt, Page 366: |
---|
430 | // computing the inner quadrangle |
---|
431 | // points (qa and qb) to guarantee tangent |
---|
432 | // continuity. |
---|
433 | // |
---|
434 | Quat<T> q1inv = q1.inverse(); |
---|
435 | Quat<T> c1 = q1inv*q2; |
---|
436 | Quat<T> c2 = q1inv*q0; |
---|
437 | Quat<T> c3 = (T) (-0.25) * (c2.log() + c1.log()); |
---|
438 | Quat<T> qa = q1 * c3.exp(); |
---|
439 | qa.normalize(); |
---|
440 | return qa; |
---|
441 | } |
---|
442 | |
---|
443 | template <class T> |
---|
444 | inline Quat<T> Quat<T>::log() const |
---|
445 | { |
---|
446 | // |
---|
447 | // For unit quaternion, from Advanced Animation and |
---|
448 | // Rendering Techniques by Watt and Watt, Page 366: |
---|
449 | // |
---|
450 | |
---|
451 | T theta = Math<T>::acos (std::min (r, (T) 1.0)); |
---|
452 | if (theta == 0) |
---|
453 | return Quat<T> (0, v); |
---|
454 | |
---|
455 | T sintheta = Math<T>::sin (theta); |
---|
456 | |
---|
457 | T k; |
---|
458 | if (abs (sintheta) < 1 && abs (theta) >= limits<T>::max() * abs (sintheta)) |
---|
459 | k = 0; |
---|
460 | else |
---|
461 | k = theta / sintheta; |
---|
462 | |
---|
463 | return Quat<T> ((T) 0, v.x * k, v.y * k, v.z * k); |
---|
464 | } |
---|
465 | |
---|
466 | template <class T> |
---|
467 | inline Quat<T> Quat<T>::exp() const |
---|
468 | { |
---|
469 | // |
---|
470 | // For pure quaternion (zero scalar part): |
---|
471 | // from Advanced Animation and Rendering |
---|
472 | // Techniques by Watt and Watt, Page 366: |
---|
473 | // |
---|
474 | |
---|
475 | T theta = v.length(); |
---|
476 | T sintheta = Math<T>::sin (theta); |
---|
477 | |
---|
478 | T k; |
---|
479 | if (abs (theta) < 1 && abs (sintheta) >= limits<T>::max() * abs (theta)) |
---|
480 | k = 0; |
---|
481 | else |
---|
482 | k = sintheta / theta; |
---|
483 | |
---|
484 | T costheta = Math<T>::cos (theta); |
---|
485 | |
---|
486 | return Quat<T> (costheta, v.x * k, v.y * k, v.z * k); |
---|
487 | } |
---|
488 | |
---|
489 | template <class T> |
---|
490 | inline T Quat<T>::angle() const |
---|
491 | { |
---|
492 | return 2.0*Math<T>::acos(r); |
---|
493 | } |
---|
494 | |
---|
495 | template <class T> |
---|
496 | inline Vec3<T> Quat<T>::axis() const |
---|
497 | { |
---|
498 | return v.normalized(); |
---|
499 | } |
---|
500 | |
---|
501 | template <class T> |
---|
502 | inline Quat<T>& Quat<T>::setAxisAngle(const Vec3<T>& axis, T radians) |
---|
503 | { |
---|
504 | r = Math<T>::cos(radians/2); |
---|
505 | v = axis.normalized() * Math<T>::sin(radians/2); |
---|
506 | return *this; |
---|
507 | } |
---|
508 | |
---|
509 | |
---|
510 | template <class T> |
---|
511 | Quat<T>& |
---|
512 | Quat<T>::setRotation(const Vec3<T>& from, const Vec3<T>& to) |
---|
513 | { |
---|
514 | // |
---|
515 | // Ported from SbRotation |
---|
516 | // |
---|
517 | |
---|
518 | T cost = from.dot(to) / Math<T>::sqrt(from.dot(from) * to.dot(to)); |
---|
519 | |
---|
520 | // check for degeneracies |
---|
521 | if (cost > 0.99999) |
---|
522 | { |
---|
523 | // |
---|
524 | // Vectors are parallel. |
---|
525 | // |
---|
526 | |
---|
527 | r = 1.0; |
---|
528 | v = Vec3<T>(0); |
---|
529 | } |
---|
530 | else if (cost < -0.99999) |
---|
531 | { |
---|
532 | // |
---|
533 | // Vectors are opposite. Find an axis to rotate around, |
---|
534 | // which should be perpendicular to the original axis. |
---|
535 | // |
---|
536 | |
---|
537 | Vec3<T> frm = from.normalized(); |
---|
538 | v = frm.cross(Vec3<T>(1, 0, 0)); |
---|
539 | if (v.length() < 0.00001) |
---|
540 | v = frm.cross(Vec3<T>(0, 1, 0)); |
---|
541 | r = 0; |
---|
542 | v.normalize(); |
---|
543 | } |
---|
544 | else |
---|
545 | { |
---|
546 | // |
---|
547 | // Use half-angle formulae: |
---|
548 | // cos^2 t = ( 1 + cos (2t) ) / 2 |
---|
549 | // w part is cosine of half the rotation angle |
---|
550 | // |
---|
551 | |
---|
552 | r = Math<T>::sqrt(0.5 * (1.0 + cost)); |
---|
553 | |
---|
554 | // |
---|
555 | // sin^2 t = ( 1 - cos (2t) ) / 2 |
---|
556 | // Do the normalization of the axis vector at the same time so |
---|
557 | // we only call sqrt once. |
---|
558 | // |
---|
559 | |
---|
560 | v = from.cross(to); |
---|
561 | v *= Math<T>::sqrt((0.5 * (1.0 - cost))/(v.dot(v))); |
---|
562 | } |
---|
563 | |
---|
564 | return *this; |
---|
565 | } |
---|
566 | |
---|
567 | template<class T> |
---|
568 | Matrix33<T> Quat<T>::toMatrix33() const |
---|
569 | { |
---|
570 | return Matrix33<T>(1. - 2.0 * (v.y * v.y + v.z * v.z), |
---|
571 | 2.0 * (v.x * v.y + v.z * r), |
---|
572 | 2.0 * (v.z * v.x - v.y * r), |
---|
573 | |
---|
574 | 2.0 * (v.x * v.y - v.z * r), |
---|
575 | 1. - 2.0 * (v.z * v.z + v.x * v.x), |
---|
576 | 2.0 * (v.y * v.z + v.x * r), |
---|
577 | |
---|
578 | 2.0 * (v.z * v.x + v.y * r), |
---|
579 | 2.0 * (v.y * v.z - v.x * r), |
---|
580 | 1. - 2.0 * (v.y * v.y + v.x * v.x)); |
---|
581 | } |
---|
582 | |
---|
583 | template<class T> |
---|
584 | Matrix44<T> Quat<T>::toMatrix44() const |
---|
585 | { |
---|
586 | return Matrix44<T>(1. - 2.0 * (v.y * v.y + v.z * v.z), |
---|
587 | 2.0 * (v.x * v.y + v.z * r), |
---|
588 | 2.0 * (v.z * v.x - v.y * r), |
---|
589 | 0., |
---|
590 | 2.0 * (v.x * v.y - v.z * r), |
---|
591 | 1. - 2.0 * (v.z * v.z + v.x * v.x), |
---|
592 | 2.0 * (v.y * v.z + v.x * r), |
---|
593 | 0., |
---|
594 | 2.0 * (v.z * v.x + v.y * r), |
---|
595 | 2.0 * (v.y * v.z - v.x * r), |
---|
596 | 1. - 2.0 * (v.y * v.y + v.x * v.x), |
---|
597 | 0., |
---|
598 | 0., |
---|
599 | 0., |
---|
600 | 0., |
---|
601 | 1.0 ); |
---|
602 | } |
---|
603 | |
---|
604 | |
---|
605 | template<class T> |
---|
606 | inline Matrix33<T> operator* (const Matrix33<T> &M, const Quat<T> &q) |
---|
607 | { |
---|
608 | return M * q.toMatrix33(); |
---|
609 | } |
---|
610 | |
---|
611 | template<class T> |
---|
612 | inline Matrix33<T> operator* (const Quat<T> &q, const Matrix33<T> &M) |
---|
613 | { |
---|
614 | return q.toMatrix33() * M; |
---|
615 | } |
---|
616 | |
---|
617 | template<class T> |
---|
618 | std::ostream& operator<< (std::ostream &o, const Quat<T> &q) |
---|
619 | { |
---|
620 | return o << "(" << q.r |
---|
621 | << " " << q.v.x |
---|
622 | << " " << q.v.y |
---|
623 | << " " << q.v.z |
---|
624 | << ")"; |
---|
625 | |
---|
626 | } |
---|
627 | |
---|
628 | template<class T> |
---|
629 | inline Quat<T> operator* (const Quat<T>& q1, const Quat<T>& q2) |
---|
630 | { |
---|
631 | // (S1+V1) (S2+V2) = S1 S2 - V1.V2 + S1 V2 + V1 S2 + V1 x V2 |
---|
632 | return Quat<T>( q1.r * q2.r - (q1.v ^ q2.v), |
---|
633 | q1.r * q2.v + q1.v * q2.r + q1.v % q2.v ); |
---|
634 | } |
---|
635 | |
---|
636 | template<class T> |
---|
637 | inline Quat<T> operator/ (const Quat<T>& q1, const Quat<T>& q2) |
---|
638 | { |
---|
639 | return q1 * q2.inverse(); |
---|
640 | } |
---|
641 | |
---|
642 | template<class T> |
---|
643 | inline Quat<T> operator/ (const Quat<T>& q,T t) |
---|
644 | { |
---|
645 | return Quat<T>(q.r/t,q.v/t); |
---|
646 | } |
---|
647 | |
---|
648 | template<class T> |
---|
649 | inline Quat<T> operator* (const Quat<T>& q,T t) |
---|
650 | { |
---|
651 | return Quat<T>(q.r*t,q.v*t); |
---|
652 | } |
---|
653 | |
---|
654 | template<class T> |
---|
655 | inline Quat<T> operator* (T t, const Quat<T>& q) |
---|
656 | { |
---|
657 | return Quat<T>(q.r*t,q.v*t); |
---|
658 | } |
---|
659 | |
---|
660 | template<class T> |
---|
661 | inline Quat<T> operator+ (const Quat<T>& q1, const Quat<T>& q2) |
---|
662 | { |
---|
663 | return Quat<T>( q1.r + q2.r, q1.v + q2.v ); |
---|
664 | } |
---|
665 | |
---|
666 | template<class T> |
---|
667 | inline Quat<T> operator- (const Quat<T>& q1, const Quat<T>& q2) |
---|
668 | { |
---|
669 | return Quat<T>( q1.r - q2.r, q1.v - q2.v ); |
---|
670 | } |
---|
671 | |
---|
672 | template<class T> |
---|
673 | inline Quat<T> operator~ (const Quat<T>& q) |
---|
674 | { |
---|
675 | return Quat<T>( q.r, -q.v ); // conjugate: (S+V)* = S-V |
---|
676 | } |
---|
677 | |
---|
678 | template<class T> |
---|
679 | inline Quat<T> operator- (const Quat<T>& q) |
---|
680 | { |
---|
681 | return Quat<T>( -q.r, -q.v ); |
---|
682 | } |
---|
683 | |
---|
684 | #if defined PLATFORM_WINDOWS && _MSC_VER |
---|
685 | #pragma warning(default:4244) |
---|
686 | #endif |
---|
687 | |
---|
688 | } // namespace Imath |
---|
689 | |
---|
690 | #endif |
---|