[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHROOTS_H |
---|
| 38 | #define INCLUDED_IMATHROOTS_H |
---|
| 39 | |
---|
| 40 | //--------------------------------------------------------------------- |
---|
| 41 | // |
---|
| 42 | // Functions to solve linear, quadratic or cubic equations |
---|
| 43 | // |
---|
| 44 | //--------------------------------------------------------------------- |
---|
| 45 | |
---|
| 46 | #include <complex> |
---|
| 47 | |
---|
| 48 | namespace Imath { |
---|
| 49 | |
---|
| 50 | //-------------------------------------------------------------------------- |
---|
| 51 | // Find the real solutions of a linear, quadratic or cubic equation: |
---|
| 52 | // |
---|
| 53 | // function equation solved |
---|
| 54 | // |
---|
| 55 | // solveLinear (a, b, x) a * x + b == 0 |
---|
| 56 | // solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0 |
---|
| 57 | // solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0 |
---|
| 58 | // solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0 |
---|
| 59 | // |
---|
| 60 | // Return value: |
---|
| 61 | // |
---|
| 62 | // 3 three real solutions, stored in x[0], x[1] and x[2] |
---|
| 63 | // 2 two real solutions, stored in x[0] and x[1] |
---|
| 64 | // 1 one real solution, stored in x[1] |
---|
| 65 | // 0 no real solutions |
---|
| 66 | // -1 all real numbers are solutions |
---|
| 67 | // |
---|
| 68 | // Notes: |
---|
| 69 | // |
---|
| 70 | // * It is possible that an equation has real solutions, but that the |
---|
| 71 | // solutions (or some intermediate result) are not representable. |
---|
| 72 | // In this case, either some of the solutions returned are invalid |
---|
| 73 | // (nan or infinity), or, if floating-point exceptions have been |
---|
| 74 | // enabled with Iex::mathExcOn(), an Iex::MathExc exception is |
---|
| 75 | // thrown. |
---|
| 76 | // |
---|
| 77 | // * Cubic equations are solved using Cardano's Formula; even though |
---|
| 78 | // only real solutions are produced, some intermediate results are |
---|
| 79 | // complex (std::complex<T>). |
---|
| 80 | // |
---|
| 81 | //-------------------------------------------------------------------------- |
---|
| 82 | |
---|
| 83 | template <class T> int solveLinear (T a, T b, T &x); |
---|
| 84 | template <class T> int solveQuadratic (T a, T b, T c, T x[2]); |
---|
| 85 | template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]); |
---|
| 86 | template <class T> int solveCubic (T a, T b, T c, T d, T x[3]); |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | //--------------- |
---|
| 90 | // Implementation |
---|
| 91 | //--------------- |
---|
| 92 | |
---|
| 93 | template <class T> |
---|
| 94 | int |
---|
| 95 | solveLinear (T a, T b, T &x) |
---|
| 96 | { |
---|
| 97 | if (a != 0) |
---|
| 98 | { |
---|
| 99 | x = -b / a; |
---|
| 100 | return 1; |
---|
| 101 | } |
---|
| 102 | else if (b != 0) |
---|
| 103 | { |
---|
| 104 | return 0; |
---|
| 105 | } |
---|
| 106 | else |
---|
| 107 | { |
---|
| 108 | return -1; |
---|
| 109 | } |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | template <class T> |
---|
| 114 | int |
---|
| 115 | solveQuadratic (T a, T b, T c, T x[2]) |
---|
| 116 | { |
---|
| 117 | if (a == 0) |
---|
| 118 | { |
---|
| 119 | return solveLinear (b, c, x[0]); |
---|
| 120 | } |
---|
| 121 | else |
---|
| 122 | { |
---|
| 123 | T D = b * b - 4 * a * c; |
---|
| 124 | |
---|
| 125 | if (D > 0) |
---|
| 126 | { |
---|
| 127 | T s = sqrt (D); |
---|
| 128 | |
---|
| 129 | x[0] = (-b + s) / (2 * a); |
---|
| 130 | x[1] = (-b - s) / (2 * a); |
---|
| 131 | return 2; |
---|
| 132 | } |
---|
| 133 | if (D == 0) |
---|
| 134 | { |
---|
| 135 | x[0] = -b / (2 * a); |
---|
| 136 | return 1; |
---|
| 137 | } |
---|
| 138 | else |
---|
| 139 | { |
---|
| 140 | return 0; |
---|
| 141 | } |
---|
| 142 | } |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | template <class T> |
---|
| 147 | int |
---|
| 148 | solveNormalizedCubic (T r, T s, T t, T x[3]) |
---|
| 149 | { |
---|
| 150 | T p = (3 * s - r * r) / 3; |
---|
| 151 | T q = 2 * r * r * r / 27 - r * s / 3 + t; |
---|
| 152 | T p3 = p / 3; |
---|
| 153 | T q2 = q / 2; |
---|
| 154 | T D = p3 * p3 * p3 + q2 * q2; |
---|
| 155 | |
---|
| 156 | if (D == 0 && p3 == 0) |
---|
| 157 | { |
---|
| 158 | x[0] = -r / 3; |
---|
| 159 | x[1] = -r / 3; |
---|
| 160 | x[2] = -r / 3; |
---|
| 161 | return 1; |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)), |
---|
| 165 | T (1) / T (3)); |
---|
| 166 | |
---|
| 167 | std::complex<T> v = -p / (T (3) * u); |
---|
| 168 | |
---|
| 169 | const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits |
---|
| 170 | // for long double |
---|
| 171 | std::complex<T> y0 (u + v); |
---|
| 172 | |
---|
| 173 | std::complex<T> y1 (-(u + v) / T (2) + |
---|
| 174 | (u - v) / T (2) * std::complex<T> (0, sqrt3)); |
---|
| 175 | |
---|
| 176 | std::complex<T> y2 (-(u + v) / T (2) - |
---|
| 177 | (u - v) / T (2) * std::complex<T> (0, sqrt3)); |
---|
| 178 | |
---|
| 179 | if (D > 0) |
---|
| 180 | { |
---|
| 181 | x[0] = y0.real() - r / 3; |
---|
| 182 | return 1; |
---|
| 183 | } |
---|
| 184 | else if (D == 0) |
---|
| 185 | { |
---|
| 186 | x[0] = y0.real() - r / 3; |
---|
| 187 | x[1] = y1.real() - r / 3; |
---|
| 188 | return 2; |
---|
| 189 | } |
---|
| 190 | else |
---|
| 191 | { |
---|
| 192 | x[0] = y0.real() - r / 3; |
---|
| 193 | x[1] = y1.real() - r / 3; |
---|
| 194 | x[2] = y2.real() - r / 3; |
---|
| 195 | return 3; |
---|
| 196 | } |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | template <class T> |
---|
| 201 | int |
---|
| 202 | solveCubic (T a, T b, T c, T d, T x[3]) |
---|
| 203 | { |
---|
| 204 | if (a == 0) |
---|
| 205 | { |
---|
| 206 | return solveQuadratic (b, c, d, x); |
---|
| 207 | } |
---|
| 208 | else |
---|
| 209 | { |
---|
| 210 | return solveNormalizedCubic (b / a, c / a, d / a, x); |
---|
| 211 | } |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | } // namespace Imath |
---|
| 216 | |
---|
| 217 | #endif |
---|