[855] | 1 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 2 | //
|
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
---|
| 4 | // Digital Ltd. LLC
|
---|
| 5 | //
|
---|
| 6 | // All rights reserved.
|
---|
| 7 | //
|
---|
| 8 | // Redistribution and use in source and binary forms, with or without
|
---|
| 9 | // modification, are permitted provided that the following conditions are
|
---|
| 10 | // met:
|
---|
| 11 | // * Redistributions of source code must retain the above copyright
|
---|
| 12 | // notice, this list of conditions and the following disclaimer.
|
---|
| 13 | // * Redistributions in binary form must reproduce the above
|
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer
|
---|
| 15 | // in the documentation and/or other materials provided with the
|
---|
| 16 | // distribution.
|
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of
|
---|
| 18 | // its contributors may be used to endorse or promote products derived
|
---|
| 19 | // from this software without specific prior written permission.
|
---|
| 20 | //
|
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 32 | //
|
---|
| 33 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 34 |
|
---|
| 35 | // Primary authors:
|
---|
| 36 | // Florian Kainz <kainz@ilm.com>
|
---|
| 37 | // Rod Bogart <rgb@ilm.com>
|
---|
| 38 |
|
---|
| 39 | //---------------------------------------------------------------------------
|
---|
| 40 | //
|
---|
| 41 | // half -- a 16-bit floating point number class:
|
---|
| 42 | //
|
---|
| 43 | // Type half can represent positive and negative numbers, whose
|
---|
| 44 | // magnitude is between roughly 6.1e-5 and 6.5e+4, with a relative
|
---|
| 45 | // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
|
---|
| 46 | // with an absolute error of 6.0e-8. All integers from -2048 to
|
---|
| 47 | // +2048 can be represented exactly.
|
---|
| 48 | //
|
---|
| 49 | // Type half behaves (almost) like the built-in C++ floating point
|
---|
| 50 | // types. In arithmetic expressions, half, float and double can be
|
---|
| 51 | // mixed freely. Here are a few examples:
|
---|
| 52 | //
|
---|
| 53 | // half a (3.5);
|
---|
| 54 | // float b (a + sqrt (a));
|
---|
| 55 | // a += b;
|
---|
| 56 | // b += a;
|
---|
| 57 | // b = a + 7;
|
---|
| 58 | //
|
---|
| 59 | // Conversions from half to float are lossless; all half numbers
|
---|
| 60 | // are exactly representable as floats.
|
---|
| 61 | //
|
---|
| 62 | // Conversions from float to half may not preserve the float's
|
---|
| 63 | // value exactly. If a float is not representable as a half, the
|
---|
| 64 | // float value is rounded to the nearest representable half. If
|
---|
| 65 | // a float value is exactly in the middle between the two closest
|
---|
| 66 | // representable half values, then the float value is rounded to
|
---|
| 67 | // the half with the greater magnitude.
|
---|
| 68 | //
|
---|
| 69 | // Overflows during float-to-half conversions cause arithmetic
|
---|
| 70 | // exceptions. An overflow occurs when the float value to be
|
---|
| 71 | // converted is too large to be represented as a half, or if the
|
---|
| 72 | // float value is an infinity or a NAN.
|
---|
| 73 | //
|
---|
| 74 | // The implementation of type half makes the following assumptions
|
---|
| 75 | // about the implementation of the built-in C++ types:
|
---|
| 76 | //
|
---|
| 77 | // float is an IEEE 754 single-precision number
|
---|
| 78 | // sizeof (float) == 4
|
---|
| 79 | // sizeof (unsigned int) == sizeof (float)
|
---|
| 80 | // alignof (unsigned int) == alignof (float)
|
---|
| 81 | // sizeof (unsigned short) == 2
|
---|
| 82 | //
|
---|
| 83 | //---------------------------------------------------------------------------
|
---|
| 84 |
|
---|
| 85 | #ifndef _HALF_H_
|
---|
| 86 | #define _HALF_H_
|
---|
| 87 |
|
---|
| 88 | #include <iostream>
|
---|
| 89 |
|
---|
| 90 | class half
|
---|
| 91 | {
|
---|
| 92 | public:
|
---|
| 93 |
|
---|
| 94 | //-------------
|
---|
| 95 | // Constructors
|
---|
| 96 | //-------------
|
---|
| 97 |
|
---|
| 98 | half (); // no initialization
|
---|
| 99 | half (const half &h);
|
---|
| 100 | half (float f);
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | //--------------------
|
---|
| 104 | // Conversion to float
|
---|
| 105 | //--------------------
|
---|
| 106 |
|
---|
| 107 | operator float () const;
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | //------------
|
---|
| 111 | // Unary minus
|
---|
| 112 | //------------
|
---|
| 113 |
|
---|
| 114 | half operator - () const;
|
---|
| 115 |
|
---|
| 116 |
|
---|
| 117 | //-----------
|
---|
| 118 | // Assignment
|
---|
| 119 | //-----------
|
---|
| 120 |
|
---|
| 121 | half operator = (half h);
|
---|
| 122 | half operator = (float f);
|
---|
| 123 |
|
---|
| 124 | half operator += (half h);
|
---|
| 125 | half operator += (float f);
|
---|
| 126 |
|
---|
| 127 | half operator -= (half h);
|
---|
| 128 | half operator -= (float f);
|
---|
| 129 |
|
---|
| 130 | half operator *= (half h);
|
---|
| 131 | half operator *= (float f);
|
---|
| 132 |
|
---|
| 133 | half operator /= (half h);
|
---|
| 134 | half operator /= (float f);
|
---|
| 135 |
|
---|
| 136 |
|
---|
| 137 | //---------------------------------------------------------
|
---|
| 138 | // Round to n-bit precision (n should be between 0 and 10).
|
---|
| 139 | // After rounding, the significand's 10-n least significant
|
---|
| 140 | // bits will be zero.
|
---|
| 141 | //---------------------------------------------------------
|
---|
| 142 |
|
---|
| 143 | half round (unsigned int n) const;
|
---|
| 144 |
|
---|
| 145 |
|
---|
| 146 | //--------------------------------------------------------------------
|
---|
| 147 | // Classification:
|
---|
| 148 | //
|
---|
| 149 | // h.isFinite() returns true if h is a normalized number,
|
---|
| 150 | // a denormalized number or zero
|
---|
| 151 | //
|
---|
| 152 | // h.isNormalized() returns true if h is a normalized number
|
---|
| 153 | //
|
---|
| 154 | // h.isDenormalized() returns true if h is a denormalized number
|
---|
| 155 | //
|
---|
| 156 | // h.isZero() returns true if h is zero
|
---|
| 157 | //
|
---|
| 158 | // h.isNan() returns true if h is a NAN
|
---|
| 159 | //
|
---|
| 160 | // h.isInfinity() returns true if h is a positive
|
---|
| 161 | // or a negative infinity
|
---|
| 162 | //
|
---|
| 163 | // h.isNegative() returns true if the sign bit of h
|
---|
| 164 | // is set (negative)
|
---|
| 165 | //--------------------------------------------------------------------
|
---|
| 166 |
|
---|
| 167 | bool isFinite () const;
|
---|
| 168 | bool isNormalized () const;
|
---|
| 169 | bool isDenormalized () const;
|
---|
| 170 | bool isZero () const;
|
---|
| 171 | bool isNan () const;
|
---|
| 172 | bool isInfinity () const;
|
---|
| 173 | bool isNegative () const;
|
---|
| 174 |
|
---|
| 175 |
|
---|
| 176 | //--------------------------------------------
|
---|
| 177 | // Special values
|
---|
| 178 | //
|
---|
| 179 | // posInf() returns +infinity
|
---|
| 180 | //
|
---|
| 181 | // negInf() returns +infinity
|
---|
| 182 | //
|
---|
| 183 | // qNan() returns a NAN with the bit
|
---|
| 184 | // pattern 0111111111111111
|
---|
| 185 | //
|
---|
| 186 | // sNan() returns a NAN with the bit
|
---|
| 187 | // pattern 0111110111111111
|
---|
| 188 | //--------------------------------------------
|
---|
| 189 |
|
---|
| 190 | static half posInf ();
|
---|
| 191 | static half negInf ();
|
---|
| 192 | static half qNan ();
|
---|
| 193 | static half sNan ();
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | //--------------------------------------
|
---|
| 197 | // Access to the internal representation
|
---|
| 198 | //--------------------------------------
|
---|
| 199 |
|
---|
| 200 | unsigned short bits () const;
|
---|
| 201 | void setBits (unsigned short bits);
|
---|
| 202 |
|
---|
| 203 |
|
---|
| 204 | public:
|
---|
| 205 |
|
---|
| 206 | union uif
|
---|
| 207 | {
|
---|
| 208 | unsigned int i;
|
---|
| 209 | float f;
|
---|
| 210 | };
|
---|
| 211 |
|
---|
| 212 | private:
|
---|
| 213 |
|
---|
| 214 | static short convert (int i);
|
---|
| 215 | static float overflow ();
|
---|
| 216 | static bool selftest ();
|
---|
| 217 |
|
---|
| 218 | unsigned short _h;
|
---|
| 219 |
|
---|
| 220 | static const uif _toFloat[1 << 16];
|
---|
| 221 | static const unsigned short _eLut[1 << 9];
|
---|
| 222 | static const bool _itWorks;
|
---|
| 223 | };
|
---|
| 224 |
|
---|
| 225 |
|
---|
| 226 | //-----------
|
---|
| 227 | // Stream I/O
|
---|
| 228 | //-----------
|
---|
| 229 |
|
---|
| 230 | std::ostream & operator << (std::ostream &os, half h);
|
---|
| 231 | std::istream & operator >> (std::istream &is, half &h);
|
---|
| 232 |
|
---|
| 233 |
|
---|
| 234 | //----------
|
---|
| 235 | // Debugging
|
---|
| 236 | //----------
|
---|
| 237 |
|
---|
| 238 | void printBits (std::ostream &os, half h);
|
---|
| 239 | void printBits (std::ostream &os, float f);
|
---|
| 240 | void printBits (char c[19], half h);
|
---|
| 241 | void printBits (char c[35], float f);
|
---|
| 242 |
|
---|
| 243 |
|
---|
| 244 | //-------
|
---|
| 245 | // Limits
|
---|
| 246 | //-------
|
---|
| 247 |
|
---|
| 248 | #define HALF_MIN 5.96046448e-08 // Smallest positive half
|
---|
| 249 |
|
---|
| 250 | #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half
|
---|
| 251 |
|
---|
| 252 | #define HALF_MAX 65504.0 // Largest positive half
|
---|
| 253 |
|
---|
| 254 | #define HALF_EPSILON 0.00097656 // Smallest positive e for which
|
---|
| 255 | // half (1.0 + e) != half (1.0)
|
---|
| 256 |
|
---|
| 257 | #define HALF_MANT_DIG 11 // Number of digits in mantissa
|
---|
| 258 | // (significand + hidden leading 1)
|
---|
| 259 |
|
---|
| 260 | #define HALF_DIG 2 // Number of base 10 digits that
|
---|
| 261 | // can be represented without change
|
---|
| 262 |
|
---|
| 263 | #define HALF_RADIX 2 // Base of the exponent
|
---|
| 264 |
|
---|
| 265 | #define HALF_MIN_EXP -13 // Minimum negative integer such that
|
---|
| 266 | // HALF_RADIX raised to the power of
|
---|
| 267 | // one less than that integer is a
|
---|
| 268 | // normalized half
|
---|
| 269 |
|
---|
| 270 | #define HALF_MAX_EXP 16 // Maximum positive integer such that
|
---|
| 271 | // HALF_RADIX raised to the power of
|
---|
| 272 | // one less than that integer is a
|
---|
| 273 | // normalized half
|
---|
| 274 |
|
---|
| 275 | #define HALF_MIN_10_EXP -4 // Minimum positive integer such
|
---|
| 276 | // that 10 raised to that power is
|
---|
| 277 | // a normalized half
|
---|
| 278 |
|
---|
| 279 | #define HALF_MAX_10_EXP 4 // Maximum positive integer such
|
---|
| 280 | // that 10 raised to that power is
|
---|
| 281 | // a normalized half
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 | //---------------------------------------------------------------------------
|
---|
| 285 | //
|
---|
| 286 | // Implementation --
|
---|
| 287 | //
|
---|
| 288 | // Representation of a float:
|
---|
| 289 | //
|
---|
| 290 | // We assume that a float, f, is an IEEE 754 single-precision
|
---|
| 291 | // floating point number, whose bits are arranged as follows:
|
---|
| 292 | //
|
---|
| 293 | // 31 (msb)
|
---|
| 294 | // |
|
---|
| 295 | // | 30 23
|
---|
| 296 | // | | |
|
---|
| 297 | // | | | 22 0 (lsb)
|
---|
| 298 | // | | | | |
|
---|
| 299 | // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
|
---|
| 300 | //
|
---|
| 301 | // s e m
|
---|
| 302 | //
|
---|
| 303 | // S is the sign-bit, e is the exponent and m is the significand.
|
---|
| 304 | //
|
---|
| 305 | // If e is between 1 and 254, f is a normalized number:
|
---|
| 306 | //
|
---|
| 307 | // s e-127
|
---|
| 308 | // f = (-1) * 2 * 1.m
|
---|
| 309 | //
|
---|
| 310 | // If e is 0, and m is not zero, f is a denormalized number:
|
---|
| 311 | //
|
---|
| 312 | // s -126
|
---|
| 313 | // f = (-1) * 2 * 0.m
|
---|
| 314 | //
|
---|
| 315 | // If e and m are both zero, f is zero:
|
---|
| 316 | //
|
---|
| 317 | // f = 0.0
|
---|
| 318 | //
|
---|
| 319 | // If e is 255, f is an "infinity" or "not a number" (NAN),
|
---|
| 320 | // depending on whether m is zero or not.
|
---|
| 321 | //
|
---|
| 322 | // Examples:
|
---|
| 323 | //
|
---|
| 324 | // 0 00000000 00000000000000000000000 = 0.0
|
---|
| 325 | // 0 01111110 00000000000000000000000 = 0.5
|
---|
| 326 | // 0 01111111 00000000000000000000000 = 1.0
|
---|
| 327 | // 0 10000000 00000000000000000000000 = 2.0
|
---|
| 328 | // 0 10000000 10000000000000000000000 = 3.0
|
---|
| 329 | // 1 10000101 11110000010000000000000 = -124.0625
|
---|
| 330 | // 0 11111111 00000000000000000000000 = +infinity
|
---|
| 331 | // 1 11111111 00000000000000000000000 = -infinity
|
---|
| 332 | // 0 11111111 10000000000000000000000 = NAN
|
---|
| 333 | // 1 11111111 11111111111111111111111 = NAN
|
---|
| 334 | //
|
---|
| 335 | // Representation of a half:
|
---|
| 336 | //
|
---|
| 337 | // Here is the bit-layout for a half number, h:
|
---|
| 338 | //
|
---|
| 339 | // 15 (msb)
|
---|
| 340 | // |
|
---|
| 341 | // | 14 10
|
---|
| 342 | // | | |
|
---|
| 343 | // | | | 9 0 (lsb)
|
---|
| 344 | // | | | | |
|
---|
| 345 | // X XXXXX XXXXXXXXXX
|
---|
| 346 | //
|
---|
| 347 | // s e m
|
---|
| 348 | //
|
---|
| 349 | // S is the sign-bit, e is the exponent and m is the significand.
|
---|
| 350 | //
|
---|
| 351 | // If e is between 1 and 30, h is a normalized number:
|
---|
| 352 | //
|
---|
| 353 | // s e-15
|
---|
| 354 | // h = (-1) * 2 * 1.m
|
---|
| 355 | //
|
---|
| 356 | // If e is 0, and m is not zero, h is a denormalized number:
|
---|
| 357 | //
|
---|
| 358 | // S -14
|
---|
| 359 | // h = (-1) * 2 * 0.m
|
---|
| 360 | //
|
---|
| 361 | // If e and m are both zero, h is zero:
|
---|
| 362 | //
|
---|
| 363 | // h = 0.0
|
---|
| 364 | //
|
---|
| 365 | // If e is 31, h is an "infinity" or "not a number" (NAN),
|
---|
| 366 | // depending on whether m is zero or not.
|
---|
| 367 | //
|
---|
| 368 | // Examples:
|
---|
| 369 | //
|
---|
| 370 | // 0 00000 0000000000 = 0.0
|
---|
| 371 | // 0 01110 0000000000 = 0.5
|
---|
| 372 | // 0 01111 0000000000 = 1.0
|
---|
| 373 | // 0 10000 0000000000 = 2.0
|
---|
| 374 | // 0 10000 1000000000 = 3.0
|
---|
| 375 | // 1 10101 1111000001 = -124.0625
|
---|
| 376 | // 0 11111 0000000000 = +infinity
|
---|
| 377 | // 1 11111 0000000000 = -infinity
|
---|
| 378 | // 0 11111 1000000000 = NAN
|
---|
| 379 | // 1 11111 1111111111 = NAN
|
---|
| 380 | //
|
---|
| 381 | // Conversion:
|
---|
| 382 | //
|
---|
| 383 | // Converting from a float to a half requires some non-trivial bit
|
---|
| 384 | // manipulations. In some cases, this makes conversion relatively
|
---|
| 385 | // slow, but the most common case is accelerated via table lookups.
|
---|
| 386 | //
|
---|
| 387 | // Converting back from a half to a float is easier because we don't
|
---|
| 388 | // have to do any rounding. In addition, there are only 65536
|
---|
| 389 | // different half numbers; we can convert each of those numbers once
|
---|
| 390 | // and store the results in a table. Later, all conversions can be
|
---|
| 391 | // done using only simple table lookups.
|
---|
| 392 | //
|
---|
| 393 | //---------------------------------------------------------------------------
|
---|
| 394 |
|
---|
| 395 |
|
---|
| 396 | //--------------------
|
---|
| 397 | // Simple constructors
|
---|
| 398 | //--------------------
|
---|
| 399 |
|
---|
| 400 | inline
|
---|
| 401 | half::half ()
|
---|
| 402 | {
|
---|
| 403 | // no initialization
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 |
|
---|
| 407 | inline
|
---|
| 408 | half::half (const half &h)
|
---|
| 409 | {
|
---|
| 410 | _h = h._h;
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 |
|
---|
| 414 | //----------------------------
|
---|
| 415 | // Half-from-float constructor
|
---|
| 416 | //----------------------------
|
---|
| 417 |
|
---|
| 418 | inline
|
---|
| 419 | half::half (float f)
|
---|
| 420 | {
|
---|
| 421 | if (f == 0)
|
---|
| 422 | {
|
---|
| 423 | //
|
---|
| 424 | // Common special case - zero.
|
---|
| 425 | // For speed, we don't preserve the zero's sign.
|
---|
| 426 | //
|
---|
| 427 |
|
---|
| 428 | _h = 0;
|
---|
| 429 | }
|
---|
| 430 | else
|
---|
| 431 | {
|
---|
| 432 | //
|
---|
| 433 | // We extract the combined sign and exponent, e, from our
|
---|
| 434 | // floating-point number, f. Then we convert e to the sign
|
---|
| 435 | // and exponent of the half number via a table lookup.
|
---|
| 436 | //
|
---|
| 437 | // For the most common case, where a normalized half is produced,
|
---|
| 438 | // the table lookup returns a non-zero value; in this case, all
|
---|
| 439 | // we have to do, is round f's significand to 10 bits and combine
|
---|
| 440 | // the result with e.
|
---|
| 441 | //
|
---|
| 442 | // For all other cases (overflow, zeroes, denormalized numbers
|
---|
| 443 | // resulting from underflow, infinities and NANs), the table
|
---|
| 444 | // lookup returns zero, and we call a longer, non-inline function
|
---|
| 445 | // to do the float-to-half conversion.
|
---|
| 446 | //
|
---|
| 447 |
|
---|
| 448 | uif x;
|
---|
| 449 |
|
---|
| 450 | x.f = f;
|
---|
| 451 |
|
---|
| 452 | register int e = (x.i >> 23) & 0x000001ff;
|
---|
| 453 |
|
---|
| 454 | e = _eLut[e];
|
---|
| 455 |
|
---|
| 456 | if (e)
|
---|
| 457 | {
|
---|
| 458 | //
|
---|
| 459 | // Simple case - round the significand and
|
---|
| 460 | // combine it with the sign and exponent.
|
---|
| 461 | //
|
---|
| 462 |
|
---|
| 463 | _h = e + (((x.i & 0x007fffff) + 0x00001000) >> 13);
|
---|
| 464 | }
|
---|
| 465 | else
|
---|
| 466 | {
|
---|
| 467 | //
|
---|
| 468 | // Difficult case - call a function.
|
---|
| 469 | //
|
---|
| 470 |
|
---|
| 471 | _h = convert (x.i);
|
---|
| 472 | }
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 |
|
---|
| 476 |
|
---|
| 477 | //------------------------------------------
|
---|
| 478 | // Half-to-float conversion via table lookup
|
---|
| 479 | //------------------------------------------
|
---|
| 480 |
|
---|
| 481 | inline
|
---|
| 482 | half::operator float () const
|
---|
| 483 | {
|
---|
| 484 | return _toFloat[_h].f;
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 |
|
---|
| 488 | //-------------------------
|
---|
| 489 | // Round to n-bit precision
|
---|
| 490 | //-------------------------
|
---|
| 491 |
|
---|
| 492 | inline half
|
---|
| 493 | half::round (unsigned int n) const
|
---|
| 494 | {
|
---|
| 495 | //
|
---|
| 496 | // Parameter check.
|
---|
| 497 | //
|
---|
| 498 |
|
---|
| 499 | if (n >= 10)
|
---|
| 500 | return *this;
|
---|
| 501 |
|
---|
| 502 | //
|
---|
| 503 | // Disassemble h into the sign, s,
|
---|
| 504 | // and the combined exponent and significand, e.
|
---|
| 505 | //
|
---|
| 506 |
|
---|
| 507 | unsigned short s = _h & 0x8000;
|
---|
| 508 | unsigned short e = _h & 0x7fff;
|
---|
| 509 |
|
---|
| 510 | //
|
---|
| 511 | // Round the exponent and significand to the nearest value
|
---|
| 512 | // where ones occur only in the (10-n) most significant bits.
|
---|
| 513 | // Note that the exponent adjusts automatically if rounding
|
---|
| 514 | // up causes the significand to overflow.
|
---|
| 515 | //
|
---|
| 516 |
|
---|
| 517 | e >>= 9 - n;
|
---|
| 518 | e += e & 1;
|
---|
| 519 | e <<= 9 - n;
|
---|
| 520 |
|
---|
| 521 | //
|
---|
| 522 | // Check for exponent overflow.
|
---|
| 523 | //
|
---|
| 524 |
|
---|
| 525 | if (e >= 0x7c00)
|
---|
| 526 | {
|
---|
| 527 | //
|
---|
| 528 | // Overflow occurred -- truncate instead of rounding.
|
---|
| 529 | //
|
---|
| 530 |
|
---|
| 531 | e = _h;
|
---|
| 532 | e >>= 10 - n;
|
---|
| 533 | e <<= 10 - n;
|
---|
| 534 | }
|
---|
| 535 |
|
---|
| 536 | //
|
---|
| 537 | // Put the original sign bit back.
|
---|
| 538 | //
|
---|
| 539 |
|
---|
| 540 | half h;
|
---|
| 541 | h._h = s | e;
|
---|
| 542 |
|
---|
| 543 | return h;
|
---|
| 544 | }
|
---|
| 545 |
|
---|
| 546 |
|
---|
| 547 | //-----------------------
|
---|
| 548 | // Other inline functions
|
---|
| 549 | //-----------------------
|
---|
| 550 |
|
---|
| 551 | inline half
|
---|
| 552 | half::operator - () const
|
---|
| 553 | {
|
---|
| 554 | half h;
|
---|
| 555 | h._h = _h ^ 0x8000;
|
---|
| 556 | return h;
|
---|
| 557 | }
|
---|
| 558 |
|
---|
| 559 |
|
---|
| 560 | inline half
|
---|
| 561 | half::operator = (half h)
|
---|
| 562 | {
|
---|
| 563 | _h = h._h;
|
---|
| 564 | return *this;
|
---|
| 565 | }
|
---|
| 566 |
|
---|
| 567 |
|
---|
| 568 | inline half
|
---|
| 569 | half::operator = (float f)
|
---|
| 570 | {
|
---|
| 571 | *this = half (f);
|
---|
| 572 | return *this;
|
---|
| 573 | }
|
---|
| 574 |
|
---|
| 575 |
|
---|
| 576 | inline half
|
---|
| 577 | half::operator += (half h)
|
---|
| 578 | {
|
---|
| 579 | *this = half (float (*this) + float (h));
|
---|
| 580 | return *this;
|
---|
| 581 | }
|
---|
| 582 |
|
---|
| 583 |
|
---|
| 584 | inline half
|
---|
| 585 | half::operator += (float f)
|
---|
| 586 | {
|
---|
| 587 | *this = half (float (*this) + f);
|
---|
| 588 | return *this;
|
---|
| 589 | }
|
---|
| 590 |
|
---|
| 591 |
|
---|
| 592 | inline half
|
---|
| 593 | half::operator -= (half h)
|
---|
| 594 | {
|
---|
| 595 | *this = half (float (*this) - float (h));
|
---|
| 596 | return *this;
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 |
|
---|
| 600 | inline half
|
---|
| 601 | half::operator -= (float f)
|
---|
| 602 | {
|
---|
| 603 | *this = half (float (*this) - f);
|
---|
| 604 | return *this;
|
---|
| 605 | }
|
---|
| 606 |
|
---|
| 607 |
|
---|
| 608 | inline half
|
---|
| 609 | half::operator *= (half h)
|
---|
| 610 | {
|
---|
| 611 | *this = half (float (*this) * float (h));
|
---|
| 612 | return *this;
|
---|
| 613 | }
|
---|
| 614 |
|
---|
| 615 |
|
---|
| 616 | inline half
|
---|
| 617 | half::operator *= (float f)
|
---|
| 618 | {
|
---|
| 619 | *this = half (float (*this) * f);
|
---|
| 620 | return *this;
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 |
|
---|
| 624 | inline half
|
---|
| 625 | half::operator /= (half h)
|
---|
| 626 | {
|
---|
| 627 | *this = half (float (*this) / float (h));
|
---|
| 628 | return *this;
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 |
|
---|
| 632 | inline half
|
---|
| 633 | half::operator /= (float f)
|
---|
| 634 | {
|
---|
| 635 | *this = half (float (*this) / f);
|
---|
| 636 | return *this;
|
---|
| 637 | }
|
---|
| 638 |
|
---|
| 639 |
|
---|
| 640 | inline bool
|
---|
| 641 | half::isFinite () const
|
---|
| 642 | {
|
---|
| 643 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
| 644 | return e < 31;
|
---|
| 645 | }
|
---|
| 646 |
|
---|
| 647 |
|
---|
| 648 | inline bool
|
---|
| 649 | half::isNormalized () const
|
---|
| 650 | {
|
---|
| 651 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
| 652 | return e > 0 && e < 31;
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 |
|
---|
| 656 | inline bool
|
---|
| 657 | half::isDenormalized () const
|
---|
| 658 | {
|
---|
| 659 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
| 660 | unsigned short m = _h & 0x3ff;
|
---|
| 661 | return e == 0 && m != 0;
|
---|
| 662 | }
|
---|
| 663 |
|
---|
| 664 |
|
---|
| 665 | inline bool
|
---|
| 666 | half::isZero () const
|
---|
| 667 | {
|
---|
| 668 | return (_h & 0x7fff) == 0;
|
---|
| 669 | }
|
---|
| 670 |
|
---|
| 671 |
|
---|
| 672 | inline bool
|
---|
| 673 | half::isNan () const
|
---|
| 674 | {
|
---|
| 675 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
| 676 | unsigned short m = _h & 0x3ff;
|
---|
| 677 | return e == 31 && m != 0;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 |
|
---|
| 681 | inline bool
|
---|
| 682 | half::isInfinity () const
|
---|
| 683 | {
|
---|
| 684 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
| 685 | unsigned short m = _h & 0x3ff;
|
---|
| 686 | return e == 31 && m == 0;
|
---|
| 687 | }
|
---|
| 688 |
|
---|
| 689 |
|
---|
| 690 | inline bool
|
---|
| 691 | half::isNegative () const
|
---|
| 692 | {
|
---|
| 693 | return (_h & 0x8000) != 0;
|
---|
| 694 | }
|
---|
| 695 |
|
---|
| 696 |
|
---|
| 697 | inline half
|
---|
| 698 | half::posInf ()
|
---|
| 699 | {
|
---|
| 700 | half h;
|
---|
| 701 | h._h = 0x7c00;
|
---|
| 702 | return h;
|
---|
| 703 | }
|
---|
| 704 |
|
---|
| 705 |
|
---|
| 706 | inline half
|
---|
| 707 | half::negInf ()
|
---|
| 708 | {
|
---|
| 709 | half h;
|
---|
| 710 | h._h = 0xfc00;
|
---|
| 711 | return h;
|
---|
| 712 | }
|
---|
| 713 |
|
---|
| 714 |
|
---|
| 715 | inline half
|
---|
| 716 | half::qNan ()
|
---|
| 717 | {
|
---|
| 718 | half h;
|
---|
| 719 | h._h = 0x7fff;
|
---|
| 720 | return h;
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 |
|
---|
| 724 | inline half
|
---|
| 725 | half::sNan ()
|
---|
| 726 | {
|
---|
| 727 | half h;
|
---|
| 728 | h._h = 0x7dff;
|
---|
| 729 | return h;
|
---|
| 730 | }
|
---|
| 731 |
|
---|
| 732 |
|
---|
| 733 | inline unsigned short
|
---|
| 734 | half::bits () const
|
---|
| 735 | {
|
---|
| 736 | return _h;
|
---|
| 737 | }
|
---|
| 738 |
|
---|
| 739 |
|
---|
| 740 | inline void
|
---|
| 741 | half::setBits (unsigned short bits)
|
---|
| 742 | {
|
---|
| 743 | _h = bits;
|
---|
| 744 | }
|
---|
| 745 |
|
---|
| 746 |
|
---|
| 747 | #endif
|
---|