1 | ///////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
---|
4 | // Digital Ltd. LLC
|
---|
5 | //
|
---|
6 | // All rights reserved.
|
---|
7 | //
|
---|
8 | // Redistribution and use in source and binary forms, with or without
|
---|
9 | // modification, are permitted provided that the following conditions are
|
---|
10 | // met:
|
---|
11 | // * Redistributions of source code must retain the above copyright
|
---|
12 | // notice, this list of conditions and the following disclaimer.
|
---|
13 | // * Redistributions in binary form must reproduce the above
|
---|
14 | // copyright notice, this list of conditions and the following disclaimer
|
---|
15 | // in the documentation and/or other materials provided with the
|
---|
16 | // distribution.
|
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of
|
---|
18 | // its contributors may be used to endorse or promote products derived
|
---|
19 | // from this software without specific prior written permission.
|
---|
20 | //
|
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
32 | //
|
---|
33 | ///////////////////////////////////////////////////////////////////////////
|
---|
34 |
|
---|
35 | // Primary authors:
|
---|
36 | // Florian Kainz <kainz@ilm.com>
|
---|
37 | // Rod Bogart <rgb@ilm.com>
|
---|
38 |
|
---|
39 | //---------------------------------------------------------------------------
|
---|
40 | //
|
---|
41 | // half -- a 16-bit floating point number class:
|
---|
42 | //
|
---|
43 | // Type half can represent positive and negative numbers, whose
|
---|
44 | // magnitude is between roughly 6.1e-5 and 6.5e+4, with a relative
|
---|
45 | // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
|
---|
46 | // with an absolute error of 6.0e-8. All integers from -2048 to
|
---|
47 | // +2048 can be represented exactly.
|
---|
48 | //
|
---|
49 | // Type half behaves (almost) like the built-in C++ floating point
|
---|
50 | // types. In arithmetic expressions, half, float and double can be
|
---|
51 | // mixed freely. Here are a few examples:
|
---|
52 | //
|
---|
53 | // half a (3.5);
|
---|
54 | // float b (a + sqrt (a));
|
---|
55 | // a += b;
|
---|
56 | // b += a;
|
---|
57 | // b = a + 7;
|
---|
58 | //
|
---|
59 | // Conversions from half to float are lossless; all half numbers
|
---|
60 | // are exactly representable as floats.
|
---|
61 | //
|
---|
62 | // Conversions from float to half may not preserve the float's
|
---|
63 | // value exactly. If a float is not representable as a half, the
|
---|
64 | // float value is rounded to the nearest representable half. If
|
---|
65 | // a float value is exactly in the middle between the two closest
|
---|
66 | // representable half values, then the float value is rounded to
|
---|
67 | // the half with the greater magnitude.
|
---|
68 | //
|
---|
69 | // Overflows during float-to-half conversions cause arithmetic
|
---|
70 | // exceptions. An overflow occurs when the float value to be
|
---|
71 | // converted is too large to be represented as a half, or if the
|
---|
72 | // float value is an infinity or a NAN.
|
---|
73 | //
|
---|
74 | // The implementation of type half makes the following assumptions
|
---|
75 | // about the implementation of the built-in C++ types:
|
---|
76 | //
|
---|
77 | // float is an IEEE 754 single-precision number
|
---|
78 | // sizeof (float) == 4
|
---|
79 | // sizeof (unsigned int) == sizeof (float)
|
---|
80 | // alignof (unsigned int) == alignof (float)
|
---|
81 | // sizeof (unsigned short) == 2
|
---|
82 | //
|
---|
83 | //---------------------------------------------------------------------------
|
---|
84 |
|
---|
85 | #ifndef _HALF_H_
|
---|
86 | #define _HALF_H_
|
---|
87 |
|
---|
88 | #include <iostream>
|
---|
89 |
|
---|
90 | class half
|
---|
91 | {
|
---|
92 | public:
|
---|
93 |
|
---|
94 | //-------------
|
---|
95 | // Constructors
|
---|
96 | //-------------
|
---|
97 |
|
---|
98 | half (); // no initialization
|
---|
99 | half (const half &h);
|
---|
100 | half (float f);
|
---|
101 |
|
---|
102 |
|
---|
103 | //--------------------
|
---|
104 | // Conversion to float
|
---|
105 | //--------------------
|
---|
106 |
|
---|
107 | operator float () const;
|
---|
108 |
|
---|
109 |
|
---|
110 | //------------
|
---|
111 | // Unary minus
|
---|
112 | //------------
|
---|
113 |
|
---|
114 | half operator - () const;
|
---|
115 |
|
---|
116 |
|
---|
117 | //-----------
|
---|
118 | // Assignment
|
---|
119 | //-----------
|
---|
120 |
|
---|
121 | half operator = (half h);
|
---|
122 | half operator = (float f);
|
---|
123 |
|
---|
124 | half operator += (half h);
|
---|
125 | half operator += (float f);
|
---|
126 |
|
---|
127 | half operator -= (half h);
|
---|
128 | half operator -= (float f);
|
---|
129 |
|
---|
130 | half operator *= (half h);
|
---|
131 | half operator *= (float f);
|
---|
132 |
|
---|
133 | half operator /= (half h);
|
---|
134 | half operator /= (float f);
|
---|
135 |
|
---|
136 |
|
---|
137 | //---------------------------------------------------------
|
---|
138 | // Round to n-bit precision (n should be between 0 and 10).
|
---|
139 | // After rounding, the significand's 10-n least significant
|
---|
140 | // bits will be zero.
|
---|
141 | //---------------------------------------------------------
|
---|
142 |
|
---|
143 | half round (unsigned int n) const;
|
---|
144 |
|
---|
145 |
|
---|
146 | //--------------------------------------------------------------------
|
---|
147 | // Classification:
|
---|
148 | //
|
---|
149 | // h.isFinite() returns true if h is a normalized number,
|
---|
150 | // a denormalized number or zero
|
---|
151 | //
|
---|
152 | // h.isNormalized() returns true if h is a normalized number
|
---|
153 | //
|
---|
154 | // h.isDenormalized() returns true if h is a denormalized number
|
---|
155 | //
|
---|
156 | // h.isZero() returns true if h is zero
|
---|
157 | //
|
---|
158 | // h.isNan() returns true if h is a NAN
|
---|
159 | //
|
---|
160 | // h.isInfinity() returns true if h is a positive
|
---|
161 | // or a negative infinity
|
---|
162 | //
|
---|
163 | // h.isNegative() returns true if the sign bit of h
|
---|
164 | // is set (negative)
|
---|
165 | //--------------------------------------------------------------------
|
---|
166 |
|
---|
167 | bool isFinite () const;
|
---|
168 | bool isNormalized () const;
|
---|
169 | bool isDenormalized () const;
|
---|
170 | bool isZero () const;
|
---|
171 | bool isNan () const;
|
---|
172 | bool isInfinity () const;
|
---|
173 | bool isNegative () const;
|
---|
174 |
|
---|
175 |
|
---|
176 | //--------------------------------------------
|
---|
177 | // Special values
|
---|
178 | //
|
---|
179 | // posInf() returns +infinity
|
---|
180 | //
|
---|
181 | // negInf() returns +infinity
|
---|
182 | //
|
---|
183 | // qNan() returns a NAN with the bit
|
---|
184 | // pattern 0111111111111111
|
---|
185 | //
|
---|
186 | // sNan() returns a NAN with the bit
|
---|
187 | // pattern 0111110111111111
|
---|
188 | //--------------------------------------------
|
---|
189 |
|
---|
190 | static half posInf ();
|
---|
191 | static half negInf ();
|
---|
192 | static half qNan ();
|
---|
193 | static half sNan ();
|
---|
194 |
|
---|
195 |
|
---|
196 | //--------------------------------------
|
---|
197 | // Access to the internal representation
|
---|
198 | //--------------------------------------
|
---|
199 |
|
---|
200 | unsigned short bits () const;
|
---|
201 | void setBits (unsigned short bits);
|
---|
202 |
|
---|
203 |
|
---|
204 | public:
|
---|
205 |
|
---|
206 | union uif
|
---|
207 | {
|
---|
208 | unsigned int i;
|
---|
209 | float f;
|
---|
210 | };
|
---|
211 |
|
---|
212 | private:
|
---|
213 |
|
---|
214 | static short convert (int i);
|
---|
215 | static float overflow ();
|
---|
216 | static bool selftest ();
|
---|
217 |
|
---|
218 | unsigned short _h;
|
---|
219 |
|
---|
220 | static const uif _toFloat[1 << 16];
|
---|
221 | static const unsigned short _eLut[1 << 9];
|
---|
222 | static const bool _itWorks;
|
---|
223 | };
|
---|
224 |
|
---|
225 |
|
---|
226 | //-----------
|
---|
227 | // Stream I/O
|
---|
228 | //-----------
|
---|
229 |
|
---|
230 | std::ostream & operator << (std::ostream &os, half h);
|
---|
231 | std::istream & operator >> (std::istream &is, half &h);
|
---|
232 |
|
---|
233 |
|
---|
234 | //----------
|
---|
235 | // Debugging
|
---|
236 | //----------
|
---|
237 |
|
---|
238 | void printBits (std::ostream &os, half h);
|
---|
239 | void printBits (std::ostream &os, float f);
|
---|
240 | void printBits (char c[19], half h);
|
---|
241 | void printBits (char c[35], float f);
|
---|
242 |
|
---|
243 |
|
---|
244 | //-------
|
---|
245 | // Limits
|
---|
246 | //-------
|
---|
247 |
|
---|
248 | #define HALF_MIN 5.96046448e-08 // Smallest positive half
|
---|
249 |
|
---|
250 | #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half
|
---|
251 |
|
---|
252 | #define HALF_MAX 65504.0 // Largest positive half
|
---|
253 |
|
---|
254 | #define HALF_EPSILON 0.00097656 // Smallest positive e for which
|
---|
255 | // half (1.0 + e) != half (1.0)
|
---|
256 |
|
---|
257 | #define HALF_MANT_DIG 11 // Number of digits in mantissa
|
---|
258 | // (significand + hidden leading 1)
|
---|
259 |
|
---|
260 | #define HALF_DIG 2 // Number of base 10 digits that
|
---|
261 | // can be represented without change
|
---|
262 |
|
---|
263 | #define HALF_RADIX 2 // Base of the exponent
|
---|
264 |
|
---|
265 | #define HALF_MIN_EXP -13 // Minimum negative integer such that
|
---|
266 | // HALF_RADIX raised to the power of
|
---|
267 | // one less than that integer is a
|
---|
268 | // normalized half
|
---|
269 |
|
---|
270 | #define HALF_MAX_EXP 16 // Maximum positive integer such that
|
---|
271 | // HALF_RADIX raised to the power of
|
---|
272 | // one less than that integer is a
|
---|
273 | // normalized half
|
---|
274 |
|
---|
275 | #define HALF_MIN_10_EXP -4 // Minimum positive integer such
|
---|
276 | // that 10 raised to that power is
|
---|
277 | // a normalized half
|
---|
278 |
|
---|
279 | #define HALF_MAX_10_EXP 4 // Maximum positive integer such
|
---|
280 | // that 10 raised to that power is
|
---|
281 | // a normalized half
|
---|
282 |
|
---|
283 |
|
---|
284 | //---------------------------------------------------------------------------
|
---|
285 | //
|
---|
286 | // Implementation --
|
---|
287 | //
|
---|
288 | // Representation of a float:
|
---|
289 | //
|
---|
290 | // We assume that a float, f, is an IEEE 754 single-precision
|
---|
291 | // floating point number, whose bits are arranged as follows:
|
---|
292 | //
|
---|
293 | // 31 (msb)
|
---|
294 | // |
|
---|
295 | // | 30 23
|
---|
296 | // | | |
|
---|
297 | // | | | 22 0 (lsb)
|
---|
298 | // | | | | |
|
---|
299 | // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
|
---|
300 | //
|
---|
301 | // s e m
|
---|
302 | //
|
---|
303 | // S is the sign-bit, e is the exponent and m is the significand.
|
---|
304 | //
|
---|
305 | // If e is between 1 and 254, f is a normalized number:
|
---|
306 | //
|
---|
307 | // s e-127
|
---|
308 | // f = (-1) * 2 * 1.m
|
---|
309 | //
|
---|
310 | // If e is 0, and m is not zero, f is a denormalized number:
|
---|
311 | //
|
---|
312 | // s -126
|
---|
313 | // f = (-1) * 2 * 0.m
|
---|
314 | //
|
---|
315 | // If e and m are both zero, f is zero:
|
---|
316 | //
|
---|
317 | // f = 0.0
|
---|
318 | //
|
---|
319 | // If e is 255, f is an "infinity" or "not a number" (NAN),
|
---|
320 | // depending on whether m is zero or not.
|
---|
321 | //
|
---|
322 | // Examples:
|
---|
323 | //
|
---|
324 | // 0 00000000 00000000000000000000000 = 0.0
|
---|
325 | // 0 01111110 00000000000000000000000 = 0.5
|
---|
326 | // 0 01111111 00000000000000000000000 = 1.0
|
---|
327 | // 0 10000000 00000000000000000000000 = 2.0
|
---|
328 | // 0 10000000 10000000000000000000000 = 3.0
|
---|
329 | // 1 10000101 11110000010000000000000 = -124.0625
|
---|
330 | // 0 11111111 00000000000000000000000 = +infinity
|
---|
331 | // 1 11111111 00000000000000000000000 = -infinity
|
---|
332 | // 0 11111111 10000000000000000000000 = NAN
|
---|
333 | // 1 11111111 11111111111111111111111 = NAN
|
---|
334 | //
|
---|
335 | // Representation of a half:
|
---|
336 | //
|
---|
337 | // Here is the bit-layout for a half number, h:
|
---|
338 | //
|
---|
339 | // 15 (msb)
|
---|
340 | // |
|
---|
341 | // | 14 10
|
---|
342 | // | | |
|
---|
343 | // | | | 9 0 (lsb)
|
---|
344 | // | | | | |
|
---|
345 | // X XXXXX XXXXXXXXXX
|
---|
346 | //
|
---|
347 | // s e m
|
---|
348 | //
|
---|
349 | // S is the sign-bit, e is the exponent and m is the significand.
|
---|
350 | //
|
---|
351 | // If e is between 1 and 30, h is a normalized number:
|
---|
352 | //
|
---|
353 | // s e-15
|
---|
354 | // h = (-1) * 2 * 1.m
|
---|
355 | //
|
---|
356 | // If e is 0, and m is not zero, h is a denormalized number:
|
---|
357 | //
|
---|
358 | // S -14
|
---|
359 | // h = (-1) * 2 * 0.m
|
---|
360 | //
|
---|
361 | // If e and m are both zero, h is zero:
|
---|
362 | //
|
---|
363 | // h = 0.0
|
---|
364 | //
|
---|
365 | // If e is 31, h is an "infinity" or "not a number" (NAN),
|
---|
366 | // depending on whether m is zero or not.
|
---|
367 | //
|
---|
368 | // Examples:
|
---|
369 | //
|
---|
370 | // 0 00000 0000000000 = 0.0
|
---|
371 | // 0 01110 0000000000 = 0.5
|
---|
372 | // 0 01111 0000000000 = 1.0
|
---|
373 | // 0 10000 0000000000 = 2.0
|
---|
374 | // 0 10000 1000000000 = 3.0
|
---|
375 | // 1 10101 1111000001 = -124.0625
|
---|
376 | // 0 11111 0000000000 = +infinity
|
---|
377 | // 1 11111 0000000000 = -infinity
|
---|
378 | // 0 11111 1000000000 = NAN
|
---|
379 | // 1 11111 1111111111 = NAN
|
---|
380 | //
|
---|
381 | // Conversion:
|
---|
382 | //
|
---|
383 | // Converting from a float to a half requires some non-trivial bit
|
---|
384 | // manipulations. In some cases, this makes conversion relatively
|
---|
385 | // slow, but the most common case is accelerated via table lookups.
|
---|
386 | //
|
---|
387 | // Converting back from a half to a float is easier because we don't
|
---|
388 | // have to do any rounding. In addition, there are only 65536
|
---|
389 | // different half numbers; we can convert each of those numbers once
|
---|
390 | // and store the results in a table. Later, all conversions can be
|
---|
391 | // done using only simple table lookups.
|
---|
392 | //
|
---|
393 | //---------------------------------------------------------------------------
|
---|
394 |
|
---|
395 |
|
---|
396 | //--------------------
|
---|
397 | // Simple constructors
|
---|
398 | //--------------------
|
---|
399 |
|
---|
400 | inline
|
---|
401 | half::half ()
|
---|
402 | {
|
---|
403 | // no initialization
|
---|
404 | }
|
---|
405 |
|
---|
406 |
|
---|
407 | inline
|
---|
408 | half::half (const half &h)
|
---|
409 | {
|
---|
410 | _h = h._h;
|
---|
411 | }
|
---|
412 |
|
---|
413 |
|
---|
414 | //----------------------------
|
---|
415 | // Half-from-float constructor
|
---|
416 | //----------------------------
|
---|
417 |
|
---|
418 | inline
|
---|
419 | half::half (float f)
|
---|
420 | {
|
---|
421 | if (f == 0)
|
---|
422 | {
|
---|
423 | //
|
---|
424 | // Common special case - zero.
|
---|
425 | // For speed, we don't preserve the zero's sign.
|
---|
426 | //
|
---|
427 |
|
---|
428 | _h = 0;
|
---|
429 | }
|
---|
430 | else
|
---|
431 | {
|
---|
432 | //
|
---|
433 | // We extract the combined sign and exponent, e, from our
|
---|
434 | // floating-point number, f. Then we convert e to the sign
|
---|
435 | // and exponent of the half number via a table lookup.
|
---|
436 | //
|
---|
437 | // For the most common case, where a normalized half is produced,
|
---|
438 | // the table lookup returns a non-zero value; in this case, all
|
---|
439 | // we have to do, is round f's significand to 10 bits and combine
|
---|
440 | // the result with e.
|
---|
441 | //
|
---|
442 | // For all other cases (overflow, zeroes, denormalized numbers
|
---|
443 | // resulting from underflow, infinities and NANs), the table
|
---|
444 | // lookup returns zero, and we call a longer, non-inline function
|
---|
445 | // to do the float-to-half conversion.
|
---|
446 | //
|
---|
447 |
|
---|
448 | uif x;
|
---|
449 |
|
---|
450 | x.f = f;
|
---|
451 |
|
---|
452 | register int e = (x.i >> 23) & 0x000001ff;
|
---|
453 |
|
---|
454 | e = _eLut[e];
|
---|
455 |
|
---|
456 | if (e)
|
---|
457 | {
|
---|
458 | //
|
---|
459 | // Simple case - round the significand and
|
---|
460 | // combine it with the sign and exponent.
|
---|
461 | //
|
---|
462 |
|
---|
463 | _h = e + (((x.i & 0x007fffff) + 0x00001000) >> 13);
|
---|
464 | }
|
---|
465 | else
|
---|
466 | {
|
---|
467 | //
|
---|
468 | // Difficult case - call a function.
|
---|
469 | //
|
---|
470 |
|
---|
471 | _h = convert (x.i);
|
---|
472 | }
|
---|
473 | }
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | //------------------------------------------
|
---|
478 | // Half-to-float conversion via table lookup
|
---|
479 | //------------------------------------------
|
---|
480 |
|
---|
481 | inline
|
---|
482 | half::operator float () const
|
---|
483 | {
|
---|
484 | return _toFloat[_h].f;
|
---|
485 | }
|
---|
486 |
|
---|
487 |
|
---|
488 | //-------------------------
|
---|
489 | // Round to n-bit precision
|
---|
490 | //-------------------------
|
---|
491 |
|
---|
492 | inline half
|
---|
493 | half::round (unsigned int n) const
|
---|
494 | {
|
---|
495 | //
|
---|
496 | // Parameter check.
|
---|
497 | //
|
---|
498 |
|
---|
499 | if (n >= 10)
|
---|
500 | return *this;
|
---|
501 |
|
---|
502 | //
|
---|
503 | // Disassemble h into the sign, s,
|
---|
504 | // and the combined exponent and significand, e.
|
---|
505 | //
|
---|
506 |
|
---|
507 | unsigned short s = _h & 0x8000;
|
---|
508 | unsigned short e = _h & 0x7fff;
|
---|
509 |
|
---|
510 | //
|
---|
511 | // Round the exponent and significand to the nearest value
|
---|
512 | // where ones occur only in the (10-n) most significant bits.
|
---|
513 | // Note that the exponent adjusts automatically if rounding
|
---|
514 | // up causes the significand to overflow.
|
---|
515 | //
|
---|
516 |
|
---|
517 | e >>= 9 - n;
|
---|
518 | e += e & 1;
|
---|
519 | e <<= 9 - n;
|
---|
520 |
|
---|
521 | //
|
---|
522 | // Check for exponent overflow.
|
---|
523 | //
|
---|
524 |
|
---|
525 | if (e >= 0x7c00)
|
---|
526 | {
|
---|
527 | //
|
---|
528 | // Overflow occurred -- truncate instead of rounding.
|
---|
529 | //
|
---|
530 |
|
---|
531 | e = _h;
|
---|
532 | e >>= 10 - n;
|
---|
533 | e <<= 10 - n;
|
---|
534 | }
|
---|
535 |
|
---|
536 | //
|
---|
537 | // Put the original sign bit back.
|
---|
538 | //
|
---|
539 |
|
---|
540 | half h;
|
---|
541 | h._h = s | e;
|
---|
542 |
|
---|
543 | return h;
|
---|
544 | }
|
---|
545 |
|
---|
546 |
|
---|
547 | //-----------------------
|
---|
548 | // Other inline functions
|
---|
549 | //-----------------------
|
---|
550 |
|
---|
551 | inline half
|
---|
552 | half::operator - () const
|
---|
553 | {
|
---|
554 | half h;
|
---|
555 | h._h = _h ^ 0x8000;
|
---|
556 | return h;
|
---|
557 | }
|
---|
558 |
|
---|
559 |
|
---|
560 | inline half
|
---|
561 | half::operator = (half h)
|
---|
562 | {
|
---|
563 | _h = h._h;
|
---|
564 | return *this;
|
---|
565 | }
|
---|
566 |
|
---|
567 |
|
---|
568 | inline half
|
---|
569 | half::operator = (float f)
|
---|
570 | {
|
---|
571 | *this = half (f);
|
---|
572 | return *this;
|
---|
573 | }
|
---|
574 |
|
---|
575 |
|
---|
576 | inline half
|
---|
577 | half::operator += (half h)
|
---|
578 | {
|
---|
579 | *this = half (float (*this) + float (h));
|
---|
580 | return *this;
|
---|
581 | }
|
---|
582 |
|
---|
583 |
|
---|
584 | inline half
|
---|
585 | half::operator += (float f)
|
---|
586 | {
|
---|
587 | *this = half (float (*this) + f);
|
---|
588 | return *this;
|
---|
589 | }
|
---|
590 |
|
---|
591 |
|
---|
592 | inline half
|
---|
593 | half::operator -= (half h)
|
---|
594 | {
|
---|
595 | *this = half (float (*this) - float (h));
|
---|
596 | return *this;
|
---|
597 | }
|
---|
598 |
|
---|
599 |
|
---|
600 | inline half
|
---|
601 | half::operator -= (float f)
|
---|
602 | {
|
---|
603 | *this = half (float (*this) - f);
|
---|
604 | return *this;
|
---|
605 | }
|
---|
606 |
|
---|
607 |
|
---|
608 | inline half
|
---|
609 | half::operator *= (half h)
|
---|
610 | {
|
---|
611 | *this = half (float (*this) * float (h));
|
---|
612 | return *this;
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | inline half
|
---|
617 | half::operator *= (float f)
|
---|
618 | {
|
---|
619 | *this = half (float (*this) * f);
|
---|
620 | return *this;
|
---|
621 | }
|
---|
622 |
|
---|
623 |
|
---|
624 | inline half
|
---|
625 | half::operator /= (half h)
|
---|
626 | {
|
---|
627 | *this = half (float (*this) / float (h));
|
---|
628 | return *this;
|
---|
629 | }
|
---|
630 |
|
---|
631 |
|
---|
632 | inline half
|
---|
633 | half::operator /= (float f)
|
---|
634 | {
|
---|
635 | *this = half (float (*this) / f);
|
---|
636 | return *this;
|
---|
637 | }
|
---|
638 |
|
---|
639 |
|
---|
640 | inline bool
|
---|
641 | half::isFinite () const
|
---|
642 | {
|
---|
643 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
644 | return e < 31;
|
---|
645 | }
|
---|
646 |
|
---|
647 |
|
---|
648 | inline bool
|
---|
649 | half::isNormalized () const
|
---|
650 | {
|
---|
651 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
652 | return e > 0 && e < 31;
|
---|
653 | }
|
---|
654 |
|
---|
655 |
|
---|
656 | inline bool
|
---|
657 | half::isDenormalized () const
|
---|
658 | {
|
---|
659 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
660 | unsigned short m = _h & 0x3ff;
|
---|
661 | return e == 0 && m != 0;
|
---|
662 | }
|
---|
663 |
|
---|
664 |
|
---|
665 | inline bool
|
---|
666 | half::isZero () const
|
---|
667 | {
|
---|
668 | return (_h & 0x7fff) == 0;
|
---|
669 | }
|
---|
670 |
|
---|
671 |
|
---|
672 | inline bool
|
---|
673 | half::isNan () const
|
---|
674 | {
|
---|
675 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
676 | unsigned short m = _h & 0x3ff;
|
---|
677 | return e == 31 && m != 0;
|
---|
678 | }
|
---|
679 |
|
---|
680 |
|
---|
681 | inline bool
|
---|
682 | half::isInfinity () const
|
---|
683 | {
|
---|
684 | unsigned short e = (_h >> 10) & 0x001f;
|
---|
685 | unsigned short m = _h & 0x3ff;
|
---|
686 | return e == 31 && m == 0;
|
---|
687 | }
|
---|
688 |
|
---|
689 |
|
---|
690 | inline bool
|
---|
691 | half::isNegative () const
|
---|
692 | {
|
---|
693 | return (_h & 0x8000) != 0;
|
---|
694 | }
|
---|
695 |
|
---|
696 |
|
---|
697 | inline half
|
---|
698 | half::posInf ()
|
---|
699 | {
|
---|
700 | half h;
|
---|
701 | h._h = 0x7c00;
|
---|
702 | return h;
|
---|
703 | }
|
---|
704 |
|
---|
705 |
|
---|
706 | inline half
|
---|
707 | half::negInf ()
|
---|
708 | {
|
---|
709 | half h;
|
---|
710 | h._h = 0xfc00;
|
---|
711 | return h;
|
---|
712 | }
|
---|
713 |
|
---|
714 |
|
---|
715 | inline half
|
---|
716 | half::qNan ()
|
---|
717 | {
|
---|
718 | half h;
|
---|
719 | h._h = 0x7fff;
|
---|
720 | return h;
|
---|
721 | }
|
---|
722 |
|
---|
723 |
|
---|
724 | inline half
|
---|
725 | half::sNan ()
|
---|
726 | {
|
---|
727 | half h;
|
---|
728 | h._h = 0x7dff;
|
---|
729 | return h;
|
---|
730 | }
|
---|
731 |
|
---|
732 |
|
---|
733 | inline unsigned short
|
---|
734 | half::bits () const
|
---|
735 | {
|
---|
736 | return _h;
|
---|
737 | }
|
---|
738 |
|
---|
739 |
|
---|
740 | inline void
|
---|
741 | half::setBits (unsigned short bits)
|
---|
742 | {
|
---|
743 | _h = bits;
|
---|
744 | }
|
---|
745 |
|
---|
746 |
|
---|
747 | #endif
|
---|