1 | /*************************************************************************
|
---|
2 | * *
|
---|
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
|
---|
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org *
|
---|
5 | * *
|
---|
6 | * This library is free software; you can redistribute it and/or *
|
---|
7 | * modify it under the terms of EITHER: *
|
---|
8 | * (1) The GNU Lesser General Public License as published by the Free *
|
---|
9 | * Software Foundation; either version 2.1 of the License, or (at *
|
---|
10 | * your option) any later version. The text of the GNU Lesser *
|
---|
11 | * General Public License is included with this library in the *
|
---|
12 | * file LICENSE.TXT. *
|
---|
13 | * (2) The BSD-style license that is included with this library in *
|
---|
14 | * the file LICENSE-BSD.TXT. *
|
---|
15 | * *
|
---|
16 | * This library is distributed in the hope that it will be useful, *
|
---|
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
---|
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
---|
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
---|
20 | * *
|
---|
21 | *************************************************************************/
|
---|
22 |
|
---|
23 | /* optimized and unoptimized vector and matrix functions */
|
---|
24 |
|
---|
25 | #ifndef _ODE_MATRIX_H_
|
---|
26 | #define _ODE_MATRIX_H_
|
---|
27 |
|
---|
28 | #include <ode/common.h>
|
---|
29 |
|
---|
30 |
|
---|
31 | #ifdef __cplusplus
|
---|
32 | extern "C" {
|
---|
33 | #endif
|
---|
34 |
|
---|
35 |
|
---|
36 | /* set a vector/matrix of size n to all zeros, or to a specific value. */
|
---|
37 |
|
---|
38 | void dSetZero (dReal *a, int n);
|
---|
39 | void dSetValue (dReal *a, int n, dReal value);
|
---|
40 |
|
---|
41 |
|
---|
42 | /* get the dot product of two n*1 vectors. if n <= 0 then
|
---|
43 | * zero will be returned (in which case a and b need not be valid).
|
---|
44 | */
|
---|
45 |
|
---|
46 | dReal dDot (const dReal *a, const dReal *b, int n);
|
---|
47 |
|
---|
48 |
|
---|
49 | /* get the dot products of (a0,b), (a1,b), etc and return them in outsum.
|
---|
50 | * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case
|
---|
51 | * the input vectors need not be valid). this function is somewhat faster
|
---|
52 | * than calling dDot() for all of the combinations separately.
|
---|
53 | */
|
---|
54 |
|
---|
55 | /* NOT INCLUDED in the library for now.
|
---|
56 | void dMultidot2 (const dReal *a0, const dReal *a1,
|
---|
57 | const dReal *b, dReal *outsum, int n);
|
---|
58 | */
|
---|
59 |
|
---|
60 |
|
---|
61 | /* matrix multiplication. all matrices are stored in standard row format.
|
---|
62 | * the digit refers to the argument that is transposed:
|
---|
63 | * 0: A = B * C (sizes: A:p*r B:p*q C:q*r)
|
---|
64 | * 1: A = B' * C (sizes: A:p*r B:q*p C:q*r)
|
---|
65 | * 2: A = B * C' (sizes: A:p*r B:p*q C:r*q)
|
---|
66 | * case 1,2 are equivalent to saying that the operation is A=B*C but
|
---|
67 | * B or C are stored in standard column format.
|
---|
68 | */
|
---|
69 |
|
---|
70 | void dMultiply0 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
71 | void dMultiply1 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
72 | void dMultiply2 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
73 |
|
---|
74 |
|
---|
75 | /* do an in-place cholesky decomposition on the lower triangle of the n*n
|
---|
76 | * symmetric matrix A (which is stored by rows). the resulting lower triangle
|
---|
77 | * will be such that L*L'=A. return 1 on success and 0 on failure (on failure
|
---|
78 | * the matrix is not positive definite).
|
---|
79 | */
|
---|
80 |
|
---|
81 | int dFactorCholesky (dReal *A, int n);
|
---|
82 |
|
---|
83 |
|
---|
84 | /* solve for x: L*L'*x = b, and put the result back into x.
|
---|
85 | * L is size n*n, b is size n*1. only the lower triangle of L is considered.
|
---|
86 | */
|
---|
87 |
|
---|
88 | void dSolveCholesky (const dReal *L, dReal *b, int n);
|
---|
89 |
|
---|
90 |
|
---|
91 | /* compute the inverse of the n*n positive definite matrix A and put it in
|
---|
92 | * Ainv. this is not especially fast. this returns 1 on success (A was
|
---|
93 | * positive definite) or 0 on failure (not PD).
|
---|
94 | */
|
---|
95 |
|
---|
96 | int dInvertPDMatrix (const dReal *A, dReal *Ainv, int n);
|
---|
97 |
|
---|
98 |
|
---|
99 | /* check whether an n*n matrix A is positive definite, return 1/0 (yes/no).
|
---|
100 | * positive definite means that x'*A*x > 0 for any x. this performs a
|
---|
101 | * cholesky decomposition of A. if the decomposition fails then the matrix
|
---|
102 | * is not positive definite. A is stored by rows. A is not altered.
|
---|
103 | */
|
---|
104 |
|
---|
105 | int dIsPositiveDefinite (const dReal *A, int n);
|
---|
106 |
|
---|
107 |
|
---|
108 | /* factorize a matrix A into L*D*L', where L is lower triangular with ones on
|
---|
109 | * the diagonal, and D is diagonal.
|
---|
110 | * A is an n*n matrix stored by rows, with a leading dimension of n rounded
|
---|
111 | * up to 4. L is written into the strict lower triangle of A (the ones are not
|
---|
112 | * written) and the reciprocal of the diagonal elements of D are written into
|
---|
113 | * d.
|
---|
114 | */
|
---|
115 | void dFactorLDLT (dReal *A, dReal *d, int n, int nskip);
|
---|
116 |
|
---|
117 |
|
---|
118 | /* solve L*x=b, where L is n*n lower triangular with ones on the diagonal,
|
---|
119 | * and x,b are n*1. b is overwritten with x.
|
---|
120 | * the leading dimension of L is `nskip'.
|
---|
121 | */
|
---|
122 | void dSolveL1 (const dReal *L, dReal *b, int n, int nskip);
|
---|
123 |
|
---|
124 |
|
---|
125 | /* solve L'*x=b, where L is n*n lower triangular with ones on the diagonal,
|
---|
126 | * and x,b are n*1. b is overwritten with x.
|
---|
127 | * the leading dimension of L is `nskip'.
|
---|
128 | */
|
---|
129 | void dSolveL1T (const dReal *L, dReal *b, int n, int nskip);
|
---|
130 |
|
---|
131 |
|
---|
132 | /* in matlab syntax: a(1:n) = a(1:n) .* d(1:n) */
|
---|
133 |
|
---|
134 | void dVectorScale (dReal *a, const dReal *d, int n);
|
---|
135 |
|
---|
136 |
|
---|
137 | /* given `L', a n*n lower triangular matrix with ones on the diagonal,
|
---|
138 | * and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix
|
---|
139 | * D, solve L*D*L'*x=b where x,b are n*1. x overwrites b.
|
---|
140 | * the leading dimension of L is `nskip'.
|
---|
141 | */
|
---|
142 |
|
---|
143 | void dSolveLDLT (const dReal *L, const dReal *d, dReal *b, int n, int nskip);
|
---|
144 |
|
---|
145 |
|
---|
146 | /* given an L*D*L' factorization of an n*n matrix A, return the updated
|
---|
147 | * factorization L2*D2*L2' of A plus the following "top left" matrix:
|
---|
148 | *
|
---|
149 | * [ b a' ] <-- b is a[0]
|
---|
150 | * [ a 0 ] <-- a is a[1..n-1]
|
---|
151 | *
|
---|
152 | * - L has size n*n, its leading dimension is nskip. L is lower triangular
|
---|
153 | * with ones on the diagonal. only the lower triangle of L is referenced.
|
---|
154 | * - d has size n. d contains the reciprocal diagonal elements of D.
|
---|
155 | * - a has size n.
|
---|
156 | * the result is written into L, except that the left column of L and d[0]
|
---|
157 | * are not actually modified. see ldltaddTL.m for further comments.
|
---|
158 | */
|
---|
159 | void dLDLTAddTL (dReal *L, dReal *d, const dReal *a, int n, int nskip);
|
---|
160 |
|
---|
161 |
|
---|
162 | /* given an L*D*L' factorization of a permuted matrix A, produce a new
|
---|
163 | * factorization for row and column `r' removed.
|
---|
164 | * - A has size n1*n1, its leading dimension in nskip. A is symmetric and
|
---|
165 | * positive definite. only the lower triangle of A is referenced.
|
---|
166 | * A itself may actually be an array of row pointers.
|
---|
167 | * - L has size n2*n2, its leading dimension in nskip. L is lower triangular
|
---|
168 | * with ones on the diagonal. only the lower triangle of L is referenced.
|
---|
169 | * - d has size n2. d contains the reciprocal diagonal elements of D.
|
---|
170 | * - p is a permutation vector. it contains n2 indexes into A. each index
|
---|
171 | * must be in the range 0..n1-1.
|
---|
172 | * - r is the row/column of L to remove.
|
---|
173 | * the new L will be written within the old L, i.e. will have the same leading
|
---|
174 | * dimension. the last row and column of L, and the last element of d, are
|
---|
175 | * undefined on exit.
|
---|
176 | *
|
---|
177 | * a fast O(n^2) algorithm is used. see ldltremove.m for further comments.
|
---|
178 | */
|
---|
179 | void dLDLTRemove (dReal **A, const int *p, dReal *L, dReal *d,
|
---|
180 | int n1, int n2, int r, int nskip);
|
---|
181 |
|
---|
182 |
|
---|
183 | /* given an n*n matrix A (with leading dimension nskip), remove the r'th row
|
---|
184 | * and column by moving elements. the new matrix will have the same leading
|
---|
185 | * dimension. the last row and column of A are untouched on exit.
|
---|
186 | */
|
---|
187 | void dRemoveRowCol (dReal *A, int n, int nskip, int r);
|
---|
188 |
|
---|
189 |
|
---|
190 | #ifdef __cplusplus
|
---|
191 | }
|
---|
192 | #endif
|
---|
193 |
|
---|
194 | #endif
|
---|