[657] | 1 | /*************************************************************************
|
---|
| 2 | * *
|
---|
| 3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
|
---|
| 4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org *
|
---|
| 5 | * *
|
---|
| 6 | * This library is free software; you can redistribute it and/or *
|
---|
| 7 | * modify it under the terms of EITHER: *
|
---|
| 8 | * (1) The GNU Lesser General Public License as published by the Free *
|
---|
| 9 | * Software Foundation; either version 2.1 of the License, or (at *
|
---|
| 10 | * your option) any later version. The text of the GNU Lesser *
|
---|
| 11 | * General Public License is included with this library in the *
|
---|
| 12 | * file LICENSE.TXT. *
|
---|
| 13 | * (2) The BSD-style license that is included with this library in *
|
---|
| 14 | * the file LICENSE-BSD.TXT. *
|
---|
| 15 | * *
|
---|
| 16 | * This library is distributed in the hope that it will be useful, *
|
---|
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
---|
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
---|
| 19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
---|
| 20 | * *
|
---|
| 21 | *************************************************************************/
|
---|
| 22 |
|
---|
| 23 | /* optimized and unoptimized vector and matrix functions */
|
---|
| 24 |
|
---|
| 25 | #ifndef _ODE_MATRIX_H_
|
---|
| 26 | #define _ODE_MATRIX_H_
|
---|
| 27 |
|
---|
| 28 | #include <ode/common.h>
|
---|
| 29 |
|
---|
| 30 |
|
---|
| 31 | #ifdef __cplusplus
|
---|
| 32 | extern "C" {
|
---|
| 33 | #endif
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | /* set a vector/matrix of size n to all zeros, or to a specific value. */
|
---|
| 37 |
|
---|
| 38 | void dSetZero (dReal *a, int n);
|
---|
| 39 | void dSetValue (dReal *a, int n, dReal value);
|
---|
| 40 |
|
---|
| 41 |
|
---|
| 42 | /* get the dot product of two n*1 vectors. if n <= 0 then
|
---|
| 43 | * zero will be returned (in which case a and b need not be valid).
|
---|
| 44 | */
|
---|
| 45 |
|
---|
| 46 | dReal dDot (const dReal *a, const dReal *b, int n);
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | /* get the dot products of (a0,b), (a1,b), etc and return them in outsum.
|
---|
| 50 | * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case
|
---|
| 51 | * the input vectors need not be valid). this function is somewhat faster
|
---|
| 52 | * than calling dDot() for all of the combinations separately.
|
---|
| 53 | */
|
---|
| 54 |
|
---|
| 55 | /* NOT INCLUDED in the library for now.
|
---|
| 56 | void dMultidot2 (const dReal *a0, const dReal *a1,
|
---|
| 57 | const dReal *b, dReal *outsum, int n);
|
---|
| 58 | */
|
---|
| 59 |
|
---|
| 60 |
|
---|
| 61 | /* matrix multiplication. all matrices are stored in standard row format.
|
---|
| 62 | * the digit refers to the argument that is transposed:
|
---|
| 63 | * 0: A = B * C (sizes: A:p*r B:p*q C:q*r)
|
---|
| 64 | * 1: A = B' * C (sizes: A:p*r B:q*p C:q*r)
|
---|
| 65 | * 2: A = B * C' (sizes: A:p*r B:p*q C:r*q)
|
---|
| 66 | * case 1,2 are equivalent to saying that the operation is A=B*C but
|
---|
| 67 | * B or C are stored in standard column format.
|
---|
| 68 | */
|
---|
| 69 |
|
---|
| 70 | void dMultiply0 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
| 71 | void dMultiply1 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
| 72 | void dMultiply2 (dReal *A, const dReal *B, const dReal *C, int p,int q,int r);
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 | /* do an in-place cholesky decomposition on the lower triangle of the n*n
|
---|
| 76 | * symmetric matrix A (which is stored by rows). the resulting lower triangle
|
---|
| 77 | * will be such that L*L'=A. return 1 on success and 0 on failure (on failure
|
---|
| 78 | * the matrix is not positive definite).
|
---|
| 79 | */
|
---|
| 80 |
|
---|
| 81 | int dFactorCholesky (dReal *A, int n);
|
---|
| 82 |
|
---|
| 83 |
|
---|
| 84 | /* solve for x: L*L'*x = b, and put the result back into x.
|
---|
| 85 | * L is size n*n, b is size n*1. only the lower triangle of L is considered.
|
---|
| 86 | */
|
---|
| 87 |
|
---|
| 88 | void dSolveCholesky (const dReal *L, dReal *b, int n);
|
---|
| 89 |
|
---|
| 90 |
|
---|
| 91 | /* compute the inverse of the n*n positive definite matrix A and put it in
|
---|
| 92 | * Ainv. this is not especially fast. this returns 1 on success (A was
|
---|
| 93 | * positive definite) or 0 on failure (not PD).
|
---|
| 94 | */
|
---|
| 95 |
|
---|
| 96 | int dInvertPDMatrix (const dReal *A, dReal *Ainv, int n);
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /* check whether an n*n matrix A is positive definite, return 1/0 (yes/no).
|
---|
| 100 | * positive definite means that x'*A*x > 0 for any x. this performs a
|
---|
| 101 | * cholesky decomposition of A. if the decomposition fails then the matrix
|
---|
| 102 | * is not positive definite. A is stored by rows. A is not altered.
|
---|
| 103 | */
|
---|
| 104 |
|
---|
| 105 | int dIsPositiveDefinite (const dReal *A, int n);
|
---|
| 106 |
|
---|
| 107 |
|
---|
| 108 | /* factorize a matrix A into L*D*L', where L is lower triangular with ones on
|
---|
| 109 | * the diagonal, and D is diagonal.
|
---|
| 110 | * A is an n*n matrix stored by rows, with a leading dimension of n rounded
|
---|
| 111 | * up to 4. L is written into the strict lower triangle of A (the ones are not
|
---|
| 112 | * written) and the reciprocal of the diagonal elements of D are written into
|
---|
| 113 | * d.
|
---|
| 114 | */
|
---|
| 115 | void dFactorLDLT (dReal *A, dReal *d, int n, int nskip);
|
---|
| 116 |
|
---|
| 117 |
|
---|
| 118 | /* solve L*x=b, where L is n*n lower triangular with ones on the diagonal,
|
---|
| 119 | * and x,b are n*1. b is overwritten with x.
|
---|
| 120 | * the leading dimension of L is `nskip'.
|
---|
| 121 | */
|
---|
| 122 | void dSolveL1 (const dReal *L, dReal *b, int n, int nskip);
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 | /* solve L'*x=b, where L is n*n lower triangular with ones on the diagonal,
|
---|
| 126 | * and x,b are n*1. b is overwritten with x.
|
---|
| 127 | * the leading dimension of L is `nskip'.
|
---|
| 128 | */
|
---|
| 129 | void dSolveL1T (const dReal *L, dReal *b, int n, int nskip);
|
---|
| 130 |
|
---|
| 131 |
|
---|
| 132 | /* in matlab syntax: a(1:n) = a(1:n) .* d(1:n) */
|
---|
| 133 |
|
---|
| 134 | void dVectorScale (dReal *a, const dReal *d, int n);
|
---|
| 135 |
|
---|
| 136 |
|
---|
| 137 | /* given `L', a n*n lower triangular matrix with ones on the diagonal,
|
---|
| 138 | * and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix
|
---|
| 139 | * D, solve L*D*L'*x=b where x,b are n*1. x overwrites b.
|
---|
| 140 | * the leading dimension of L is `nskip'.
|
---|
| 141 | */
|
---|
| 142 |
|
---|
| 143 | void dSolveLDLT (const dReal *L, const dReal *d, dReal *b, int n, int nskip);
|
---|
| 144 |
|
---|
| 145 |
|
---|
| 146 | /* given an L*D*L' factorization of an n*n matrix A, return the updated
|
---|
| 147 | * factorization L2*D2*L2' of A plus the following "top left" matrix:
|
---|
| 148 | *
|
---|
| 149 | * [ b a' ] <-- b is a[0]
|
---|
| 150 | * [ a 0 ] <-- a is a[1..n-1]
|
---|
| 151 | *
|
---|
| 152 | * - L has size n*n, its leading dimension is nskip. L is lower triangular
|
---|
| 153 | * with ones on the diagonal. only the lower triangle of L is referenced.
|
---|
| 154 | * - d has size n. d contains the reciprocal diagonal elements of D.
|
---|
| 155 | * - a has size n.
|
---|
| 156 | * the result is written into L, except that the left column of L and d[0]
|
---|
| 157 | * are not actually modified. see ldltaddTL.m for further comments.
|
---|
| 158 | */
|
---|
| 159 | void dLDLTAddTL (dReal *L, dReal *d, const dReal *a, int n, int nskip);
|
---|
| 160 |
|
---|
| 161 |
|
---|
| 162 | /* given an L*D*L' factorization of a permuted matrix A, produce a new
|
---|
| 163 | * factorization for row and column `r' removed.
|
---|
| 164 | * - A has size n1*n1, its leading dimension in nskip. A is symmetric and
|
---|
| 165 | * positive definite. only the lower triangle of A is referenced.
|
---|
| 166 | * A itself may actually be an array of row pointers.
|
---|
| 167 | * - L has size n2*n2, its leading dimension in nskip. L is lower triangular
|
---|
| 168 | * with ones on the diagonal. only the lower triangle of L is referenced.
|
---|
| 169 | * - d has size n2. d contains the reciprocal diagonal elements of D.
|
---|
| 170 | * - p is a permutation vector. it contains n2 indexes into A. each index
|
---|
| 171 | * must be in the range 0..n1-1.
|
---|
| 172 | * - r is the row/column of L to remove.
|
---|
| 173 | * the new L will be written within the old L, i.e. will have the same leading
|
---|
| 174 | * dimension. the last row and column of L, and the last element of d, are
|
---|
| 175 | * undefined on exit.
|
---|
| 176 | *
|
---|
| 177 | * a fast O(n^2) algorithm is used. see ldltremove.m for further comments.
|
---|
| 178 | */
|
---|
| 179 | void dLDLTRemove (dReal **A, const int *p, dReal *L, dReal *d,
|
---|
| 180 | int n1, int n2, int r, int nskip);
|
---|
| 181 |
|
---|
| 182 |
|
---|
| 183 | /* given an n*n matrix A (with leading dimension nskip), remove the r'th row
|
---|
| 184 | * and column by moving elements. the new matrix will have the same leading
|
---|
| 185 | * dimension. the last row and column of A are untouched on exit.
|
---|
| 186 | */
|
---|
| 187 | void dRemoveRowCol (dReal *A, int n, int nskip, int r);
|
---|
| 188 |
|
---|
| 189 |
|
---|
| 190 | #ifdef __cplusplus
|
---|
| 191 | }
|
---|
| 192 | #endif
|
---|
| 193 |
|
---|
| 194 | #endif
|
---|