[692] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #ifndef __Matrix3_H__
|
---|
| 26 | #define __Matrix3_H__
|
---|
| 27 |
|
---|
| 28 | #include "OgrePrerequisites.h"
|
---|
| 29 |
|
---|
| 30 | #include "OgreVector3.h"
|
---|
| 31 |
|
---|
| 32 | // NB All code adapted from Wild Magic 0.2 Matrix math (free source code)
|
---|
| 33 | // http://www.geometrictools.com/
|
---|
| 34 |
|
---|
| 35 | // NOTE. The (x,y,z) coordinate system is assumed to be right-handed.
|
---|
| 36 | // Coordinate axis rotation matrices are of the form
|
---|
| 37 | // RX = 1 0 0
|
---|
| 38 | // 0 cos(t) -sin(t)
|
---|
| 39 | // 0 sin(t) cos(t)
|
---|
| 40 | // where t > 0 indicates a counterclockwise rotation in the yz-plane
|
---|
| 41 | // RY = cos(t) 0 sin(t)
|
---|
| 42 | // 0 1 0
|
---|
| 43 | // -sin(t) 0 cos(t)
|
---|
| 44 | // where t > 0 indicates a counterclockwise rotation in the zx-plane
|
---|
| 45 | // RZ = cos(t) -sin(t) 0
|
---|
| 46 | // sin(t) cos(t) 0
|
---|
| 47 | // 0 0 1
|
---|
| 48 | // where t > 0 indicates a counterclockwise rotation in the xy-plane.
|
---|
| 49 |
|
---|
| 50 | namespace Ogre
|
---|
| 51 | {
|
---|
| 52 | /** A 3x3 matrix which can represent rotations around axes.
|
---|
| 53 | @note
|
---|
| 54 | <b>All the code is adapted from the Wild Magic 0.2 Matrix
|
---|
| 55 | library (http://www.geometrictools.com/).</b>
|
---|
| 56 | @par
|
---|
| 57 | The coordinate system is assumed to be <b>right-handed</b>.
|
---|
| 58 | */
|
---|
| 59 | class _OgreExport Matrix3
|
---|
| 60 | {
|
---|
| 61 | public:
|
---|
| 62 | /** Default constructor.
|
---|
| 63 | @note
|
---|
| 64 | It does <b>NOT</b> initialize the matrix for efficiency.
|
---|
| 65 | */
|
---|
| 66 | inline Matrix3 () {};
|
---|
| 67 | inline explicit Matrix3 (const Real arr[3][3])
|
---|
| 68 | {
|
---|
| 69 | memcpy(m,arr,9*sizeof(Real));
|
---|
| 70 | }
|
---|
| 71 | inline Matrix3 (const Matrix3& rkMatrix)
|
---|
| 72 | {
|
---|
| 73 | memcpy(m,rkMatrix.m,9*sizeof(Real));
|
---|
| 74 | }
|
---|
| 75 | Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02,
|
---|
| 76 | Real fEntry10, Real fEntry11, Real fEntry12,
|
---|
| 77 | Real fEntry20, Real fEntry21, Real fEntry22)
|
---|
| 78 | {
|
---|
| 79 | m[0][0] = fEntry00;
|
---|
| 80 | m[0][1] = fEntry01;
|
---|
| 81 | m[0][2] = fEntry02;
|
---|
| 82 | m[1][0] = fEntry10;
|
---|
| 83 | m[1][1] = fEntry11;
|
---|
| 84 | m[1][2] = fEntry12;
|
---|
| 85 | m[2][0] = fEntry20;
|
---|
| 86 | m[2][1] = fEntry21;
|
---|
| 87 | m[2][2] = fEntry22;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | // member access, allows use of construct mat[r][c]
|
---|
| 91 | inline Real* operator[] (size_t iRow) const
|
---|
| 92 | {
|
---|
| 93 | return (Real*)m[iRow];
|
---|
| 94 | }
|
---|
| 95 | /*inline operator Real* ()
|
---|
| 96 | {
|
---|
| 97 | return (Real*)m[0];
|
---|
| 98 | }*/
|
---|
| 99 | Vector3 GetColumn (size_t iCol) const;
|
---|
| 100 | void SetColumn(size_t iCol, const Vector3& vec);
|
---|
| 101 | void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
|
---|
| 102 |
|
---|
| 103 | // assignment and comparison
|
---|
| 104 | inline Matrix3& operator= (const Matrix3& rkMatrix)
|
---|
| 105 | {
|
---|
| 106 | memcpy(m,rkMatrix.m,9*sizeof(Real));
|
---|
| 107 | return *this;
|
---|
| 108 | }
|
---|
| 109 | bool operator== (const Matrix3& rkMatrix) const;
|
---|
| 110 | inline bool operator!= (const Matrix3& rkMatrix) const
|
---|
| 111 | {
|
---|
| 112 | return !operator==(rkMatrix);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | // arithmetic operations
|
---|
| 116 | Matrix3 operator+ (const Matrix3& rkMatrix) const;
|
---|
| 117 | Matrix3 operator- (const Matrix3& rkMatrix) const;
|
---|
| 118 | Matrix3 operator* (const Matrix3& rkMatrix) const;
|
---|
| 119 | Matrix3 operator- () const;
|
---|
| 120 |
|
---|
| 121 | // matrix * vector [3x3 * 3x1 = 3x1]
|
---|
| 122 | Vector3 operator* (const Vector3& rkVector) const;
|
---|
| 123 |
|
---|
| 124 | // vector * matrix [1x3 * 3x3 = 1x3]
|
---|
| 125 | _OgreExport friend Vector3 operator* (const Vector3& rkVector,
|
---|
| 126 | const Matrix3& rkMatrix);
|
---|
| 127 |
|
---|
| 128 | // matrix * scalar
|
---|
| 129 | Matrix3 operator* (Real fScalar) const;
|
---|
| 130 |
|
---|
| 131 | // scalar * matrix
|
---|
| 132 | _OgreExport friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix);
|
---|
| 133 |
|
---|
| 134 | // utilities
|
---|
| 135 | Matrix3 Transpose () const;
|
---|
| 136 | bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const;
|
---|
| 137 | Matrix3 Inverse (Real fTolerance = 1e-06) const;
|
---|
| 138 | Real Determinant () const;
|
---|
| 139 |
|
---|
| 140 | // singular value decomposition
|
---|
| 141 | void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS,
|
---|
| 142 | Matrix3& rkR) const;
|
---|
| 143 | void SingularValueComposition (const Matrix3& rkL,
|
---|
| 144 | const Vector3& rkS, const Matrix3& rkR);
|
---|
| 145 |
|
---|
| 146 | // Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
|
---|
| 147 | void Orthonormalize ();
|
---|
| 148 |
|
---|
| 149 | // orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12)
|
---|
| 150 | void QDUDecomposition (Matrix3& rkQ, Vector3& rkD,
|
---|
| 151 | Vector3& rkU) const;
|
---|
| 152 |
|
---|
| 153 | Real SpectralNorm () const;
|
---|
| 154 |
|
---|
| 155 | // matrix must be orthonormal
|
---|
| 156 | void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const;
|
---|
| 157 | inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const {
|
---|
| 158 | Radian r;
|
---|
| 159 | ToAxisAngle ( rkAxis, r );
|
---|
| 160 | rfAngle = r;
|
---|
| 161 | }
|
---|
| 162 | void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians);
|
---|
| 163 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
| 164 | inline void ToAxisAngle (Vector3& rkAxis, Real& rfRadians) const {
|
---|
| 165 | Radian r;
|
---|
| 166 | ToAxisAngle ( rkAxis, r );
|
---|
| 167 | rfRadians = r.valueRadians();
|
---|
| 168 | }
|
---|
| 169 | inline void FromAxisAngle (const Vector3& rkAxis, Real fRadians) {
|
---|
| 170 | FromAxisAngle ( rkAxis, Radian(fRadians) );
|
---|
| 171 | }
|
---|
| 172 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
| 173 |
|
---|
| 174 | // The matrix must be orthonormal. The decomposition is yaw*pitch*roll
|
---|
| 175 | // where yaw is rotation about the Up vector, pitch is rotation about the
|
---|
| 176 | // Right axis, and roll is rotation about the Direction axis.
|
---|
| 177 | bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 178 | Radian& rfRAngle) const;
|
---|
| 179 | bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 180 | Radian& rfRAngle) const;
|
---|
| 181 | bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 182 | Radian& rfRAngle) const;
|
---|
| 183 | bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 184 | Radian& rfRAngle) const;
|
---|
| 185 | bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 186 | Radian& rfRAngle) const;
|
---|
| 187 | bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
| 188 | Radian& rfRAngle) const;
|
---|
| 189 | void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 190 | void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 191 | void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 192 | void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 193 | void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 194 | void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
| 195 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
| 196 | inline bool ToEulerAnglesXYZ (float& rfYAngle, float& rfPAngle,
|
---|
| 197 | float& rfRAngle) const {
|
---|
| 198 | Radian y, p, r;
|
---|
| 199 | bool b = ToEulerAnglesXYZ(y,p,r);
|
---|
| 200 | rfYAngle = y.valueRadians();
|
---|
| 201 | rfPAngle = p.valueRadians();
|
---|
| 202 | rfRAngle = r.valueRadians();
|
---|
| 203 | return b;
|
---|
| 204 | }
|
---|
| 205 | inline bool ToEulerAnglesXZY (float& rfYAngle, float& rfPAngle,
|
---|
| 206 | float& rfRAngle) const {
|
---|
| 207 | Radian y, p, r;
|
---|
| 208 | bool b = ToEulerAnglesXZY(y,p,r);
|
---|
| 209 | rfYAngle = y.valueRadians();
|
---|
| 210 | rfPAngle = p.valueRadians();
|
---|
| 211 | rfRAngle = r.valueRadians();
|
---|
| 212 | return b;
|
---|
| 213 | }
|
---|
| 214 | inline bool ToEulerAnglesYXZ (float& rfYAngle, float& rfPAngle,
|
---|
| 215 | float& rfRAngle) const {
|
---|
| 216 | Radian y, p, r;
|
---|
| 217 | bool b = ToEulerAnglesYXZ(y,p,r);
|
---|
| 218 | rfYAngle = y.valueRadians();
|
---|
| 219 | rfPAngle = p.valueRadians();
|
---|
| 220 | rfRAngle = r.valueRadians();
|
---|
| 221 | return b;
|
---|
| 222 | }
|
---|
| 223 | inline bool ToEulerAnglesYZX (float& rfYAngle, float& rfPAngle,
|
---|
| 224 | float& rfRAngle) const {
|
---|
| 225 | Radian y, p, r;
|
---|
| 226 | bool b = ToEulerAnglesYZX(y,p,r);
|
---|
| 227 | rfYAngle = y.valueRadians();
|
---|
| 228 | rfPAngle = p.valueRadians();
|
---|
| 229 | rfRAngle = r.valueRadians();
|
---|
| 230 | return b;
|
---|
| 231 | }
|
---|
| 232 | inline bool ToEulerAnglesZXY (float& rfYAngle, float& rfPAngle,
|
---|
| 233 | float& rfRAngle) const {
|
---|
| 234 | Radian y, p, r;
|
---|
| 235 | bool b = ToEulerAnglesZXY(y,p,r);
|
---|
| 236 | rfYAngle = y.valueRadians();
|
---|
| 237 | rfPAngle = p.valueRadians();
|
---|
| 238 | rfRAngle = r.valueRadians();
|
---|
| 239 | return b;
|
---|
| 240 | }
|
---|
| 241 | inline bool ToEulerAnglesZYX (float& rfYAngle, float& rfPAngle,
|
---|
| 242 | float& rfRAngle) const {
|
---|
| 243 | Radian y, p, r;
|
---|
| 244 | bool b = ToEulerAnglesZYX(y,p,r);
|
---|
| 245 | rfYAngle = y.valueRadians();
|
---|
| 246 | rfPAngle = p.valueRadians();
|
---|
| 247 | rfRAngle = r.valueRadians();
|
---|
| 248 | return b;
|
---|
| 249 | }
|
---|
| 250 | inline void FromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 251 | FromEulerAnglesXYZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 252 | }
|
---|
| 253 | inline void FromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 254 | FromEulerAnglesXZY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 255 | }
|
---|
| 256 | inline void FromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 257 | FromEulerAnglesYXZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 258 | }
|
---|
| 259 | inline void FromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 260 | FromEulerAnglesYZX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 261 | }
|
---|
| 262 | inline void FromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 263 | FromEulerAnglesZXY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 264 | }
|
---|
| 265 | inline void FromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle) {
|
---|
| 266 | FromEulerAnglesZYX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
| 267 | }
|
---|
| 268 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
| 269 | // eigensolver, matrix must be symmetric
|
---|
| 270 | void EigenSolveSymmetric (Real afEigenvalue[3],
|
---|
| 271 | Vector3 akEigenvector[3]) const;
|
---|
| 272 |
|
---|
| 273 | static void TensorProduct (const Vector3& rkU, const Vector3& rkV,
|
---|
| 274 | Matrix3& rkProduct);
|
---|
| 275 |
|
---|
| 276 | static const Real EPSILON;
|
---|
| 277 | static const Matrix3 ZERO;
|
---|
| 278 | static const Matrix3 IDENTITY;
|
---|
| 279 |
|
---|
| 280 | protected:
|
---|
| 281 | // support for eigensolver
|
---|
| 282 | void Tridiagonal (Real afDiag[3], Real afSubDiag[3]);
|
---|
| 283 | bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]);
|
---|
| 284 |
|
---|
| 285 | // support for singular value decomposition
|
---|
| 286 | static const Real ms_fSvdEpsilon;
|
---|
| 287 | static const unsigned int ms_iSvdMaxIterations;
|
---|
| 288 | static void Bidiagonalize (Matrix3& kA, Matrix3& kL,
|
---|
| 289 | Matrix3& kR);
|
---|
| 290 | static void GolubKahanStep (Matrix3& kA, Matrix3& kL,
|
---|
| 291 | Matrix3& kR);
|
---|
| 292 |
|
---|
| 293 | // support for spectral norm
|
---|
| 294 | static Real MaxCubicRoot (Real afCoeff[3]);
|
---|
| 295 |
|
---|
| 296 | Real m[3][3];
|
---|
| 297 |
|
---|
| 298 | // for faster access
|
---|
| 299 | friend class Matrix4;
|
---|
| 300 | };
|
---|
| 301 | }
|
---|
| 302 | #endif
|
---|