/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2005 The OGRE Team
Also see acknowledgements in Readme.html
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA, or go to
http://www.gnu.org/copyleft/lesser.txt.
-----------------------------------------------------------------------------
*/
#ifndef __Matrix3_H__
#define __Matrix3_H__
#include "OgrePrerequisites.h"
#include "OgreVector3.h"
// NB All code adapted from Wild Magic 0.2 Matrix math (free source code)
// http://www.magic-software.com
// NOTE. The (x,y,z) coordinate system is assumed to be right-handed.
// Coordinate axis rotation matrices are of the form
// RX = 1 0 0
// 0 cos(t) -sin(t)
// 0 sin(t) cos(t)
// where t > 0 indicates a counterclockwise rotation in the yz-plane
// RY = cos(t) 0 sin(t)
// 0 1 0
// -sin(t) 0 cos(t)
// where t > 0 indicates a counterclockwise rotation in the zx-plane
// RZ = cos(t) -sin(t) 0
// sin(t) cos(t) 0
// 0 0 1
// where t > 0 indicates a counterclockwise rotation in the xy-plane.
namespace Ogre
{
/** A 3x3 matrix which can represent rotations around axes.
@note
All the code is adapted from the Wild Magic 0.2 Matrix
library (http://www.magic-software.com).
@par
The coordinate system is assumed to be right-handed.
*/
class _OgreExport Matrix3
{
public:
/** Default constructor.
@note
It does NOT initialize the matrix for efficiency.
*/
inline Matrix3 () {};
inline explicit Matrix3 (const Real arr[3][3])
{
memcpy(m,arr,9*sizeof(Real));
}
inline Matrix3 (const Matrix3& rkMatrix)
{
memcpy(m,rkMatrix.m,9*sizeof(Real));
}
Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02,
Real fEntry10, Real fEntry11, Real fEntry12,
Real fEntry20, Real fEntry21, Real fEntry22)
{
m[0][0] = fEntry00;
m[0][1] = fEntry01;
m[0][2] = fEntry02;
m[1][0] = fEntry10;
m[1][1] = fEntry11;
m[1][2] = fEntry12;
m[2][0] = fEntry20;
m[2][1] = fEntry21;
m[2][2] = fEntry22;
}
// member access, allows use of construct mat[r][c]
inline Real* operator[] (size_t iRow) const
{
return (Real*)m[iRow];
}
/*inline operator Real* ()
{
return (Real*)m[0];
}*/
Vector3 GetColumn (size_t iCol) const;
void SetColumn(size_t iCol, const Vector3& vec);
void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
// assignment and comparison
inline Matrix3& operator= (const Matrix3& rkMatrix)
{
memcpy(m,rkMatrix.m,9*sizeof(Real));
return *this;
}
bool operator== (const Matrix3& rkMatrix) const;
inline bool operator!= (const Matrix3& rkMatrix) const
{
return !operator==(rkMatrix);
}
// arithmetic operations
Matrix3 operator+ (const Matrix3& rkMatrix) const;
Matrix3 operator- (const Matrix3& rkMatrix) const;
Matrix3 operator* (const Matrix3& rkMatrix) const;
Matrix3 operator- () const;
// matrix * vector [3x3 * 3x1 = 3x1]
Vector3 operator* (const Vector3& rkVector) const;
// vector * matrix [1x3 * 3x3 = 1x3]
_OgreExport friend Vector3 operator* (const Vector3& rkVector,
const Matrix3& rkMatrix);
// matrix * scalar
Matrix3 operator* (Real fScalar) const;
// scalar * matrix
_OgreExport friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix);
// utilities
Matrix3 Transpose () const;
bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const;
Matrix3 Inverse (Real fTolerance = 1e-06) const;
Real Determinant () const;
// singular value decomposition
void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS,
Matrix3& rkR) const;
void SingularValueComposition (const Matrix3& rkL,
const Vector3& rkS, const Matrix3& rkR);
// Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
void Orthonormalize ();
// orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12)
void QDUDecomposition (Matrix3& rkQ, Vector3& rkD,
Vector3& rkU) const;
Real SpectralNorm () const;
// matrix must be orthonormal
void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const;
inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const {
Radian r;
ToAxisAngle ( rkAxis, r );
rfAngle = r;
}
void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians);
#ifndef OGRE_FORCE_ANGLE_TYPES
inline void ToAxisAngle (Vector3& rkAxis, Real& rfRadians) const {
Radian r;
ToAxisAngle ( rkAxis, r );
rfRadians = r.valueRadians();
}
inline void FromAxisAngle (const Vector3& rkAxis, Real fRadians) {
FromAxisAngle ( rkAxis, Radian(fRadians) );
}
#endif//OGRE_FORCE_ANGLE_TYPES
// The matrix must be orthonormal. The decomposition is yaw*pitch*roll
// where yaw is rotation about the Up vector, pitch is rotation about the
// Right axis, and roll is rotation about the Direction axis.
bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
Radian& rfRAngle) const;
void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
#ifndef OGRE_FORCE_ANGLE_TYPES
inline bool ToEulerAnglesXYZ (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesXYZ(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline bool ToEulerAnglesXZY (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesXZY(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline bool ToEulerAnglesYXZ (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesYXZ(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline bool ToEulerAnglesYZX (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesYZX(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline bool ToEulerAnglesZXY (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesZXY(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline bool ToEulerAnglesZYX (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const {
Radian y, p, r;
bool b = ToEulerAnglesZYX(y,p,r);
rfYAngle = y.valueRadians();
rfPAngle = p.valueRadians();
rfRAngle = r.valueRadians();
return b;
}
inline void FromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesXYZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
inline void FromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesXZY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
inline void FromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesYXZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
inline void FromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesYZX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
inline void FromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesZXY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
inline void FromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle) {
FromEulerAnglesZYX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
}
#endif//OGRE_FORCE_ANGLE_TYPES
// eigensolver, matrix must be symmetric
void EigenSolveSymmetric (Real afEigenvalue[3],
Vector3 akEigenvector[3]) const;
static void TensorProduct (const Vector3& rkU, const Vector3& rkV,
Matrix3& rkProduct);
static const Real EPSILON;
static const Matrix3 ZERO;
static const Matrix3 IDENTITY;
protected:
// support for eigensolver
void Tridiagonal (Real afDiag[3], Real afSubDiag[3]);
bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]);
// support for singular value decomposition
static const Real ms_fSvdEpsilon;
static const unsigned int ms_iSvdMaxIterations;
static void Bidiagonalize (Matrix3& kA, Matrix3& kL,
Matrix3& kR);
static void GolubKahanStep (Matrix3& kA, Matrix3& kL,
Matrix3& kR);
// support for spectral norm
static Real MaxCubicRoot (Real afCoeff[3]);
Real m[3][3];
// for faster access
friend class Matrix4;
};
}
#endif