1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #ifndef __RadixSort_H__
|
---|
26 | #define __RadixSort_H__
|
---|
27 |
|
---|
28 | #include "OgrePrerequisites.h"
|
---|
29 |
|
---|
30 | namespace Ogre {
|
---|
31 |
|
---|
32 | /** Class for performing a radix sort (fast comparison-less sort based on
|
---|
33 | byte value) on various standard STL containers.
|
---|
34 | @remarks
|
---|
35 | A radix sort is a very fast sort algorithm. It doesn't use comparisons
|
---|
36 | and thus is able to break the theoretical minimum O(N*logN) complexity.
|
---|
37 | Radix sort is complexity O(k*N), where k is a constant. Note that radix
|
---|
38 | sorting is not in-place, it requires additional storage, so it trades
|
---|
39 | memory for speed. The overhead of copying means that it is only faster
|
---|
40 | for fairly large datasets, so you are advised to only use it for collections
|
---|
41 | of at least a few hundred items.
|
---|
42 | @par
|
---|
43 | This is a template class to allow it to deal with a variety of containers,
|
---|
44 | and a variety of value types to sort on. In addition to providing the
|
---|
45 | container and value type on construction, you also need to supply a
|
---|
46 | functor object which will retrieve the value to compare on for each item
|
---|
47 | in the list. For example, if you had an std::vector of by-value instances
|
---|
48 | of an object of class 'Bibble', and you wanted to sort on
|
---|
49 | Bibble::getDoobrie(), you'd have to firstly create a functor
|
---|
50 | like this:
|
---|
51 | @code
|
---|
52 | struct BibbleSortFunctor
|
---|
53 | {
|
---|
54 | float operator()(const Bibble& val) const
|
---|
55 | {
|
---|
56 | return val.getDoobrie();
|
---|
57 | }
|
---|
58 | }
|
---|
59 | @endcode
|
---|
60 | Then, you need to declare a RadixSort class which names the container type,
|
---|
61 | the value type in the container, and the type of the value you want to
|
---|
62 | sort by. You can then call the sort function. E.g.
|
---|
63 | @code
|
---|
64 | RadixSort<BibbleList, Bibble, float> radixSorter;
|
---|
65 | BibbleSortFunctor functor;
|
---|
66 |
|
---|
67 | radixSorter.sort(myBibbleList, functor);
|
---|
68 | @endcode
|
---|
69 | You should try to reuse RadixSort instances, since repeated allocation of the
|
---|
70 | internal storage is then avoided.
|
---|
71 | @note
|
---|
72 | Radix sorting is often associated with just unsigned integer values. Our
|
---|
73 | implementation can handle both unsigned and signed integers, as well as
|
---|
74 | floats (which are often not supported by other radix sorters). doubles
|
---|
75 | are not supported; you will need to implement your functor object to convert
|
---|
76 | to float if you wish to use this sort routine.
|
---|
77 | */
|
---|
78 | template <class TContainer, class TContainerValueType, typename TCompValueType>
|
---|
79 | class RadixSort
|
---|
80 | {
|
---|
81 | public:
|
---|
82 | typedef typename TContainer::iterator ContainerIter;
|
---|
83 | protected:
|
---|
84 | /// Alpha-pass counters of values (histogram)
|
---|
85 | /// 4 of them so we can radix sort a maximum of a 32bit value
|
---|
86 | int mCounters[4][256];
|
---|
87 | /// Beta-pass offsets
|
---|
88 | int mOffsets[256];
|
---|
89 | /// Sort area size
|
---|
90 | int mSortSize;
|
---|
91 | /// Number of passes for this type
|
---|
92 | int mNumPasses;
|
---|
93 |
|
---|
94 | struct SortEntry
|
---|
95 | {
|
---|
96 | TCompValueType key;
|
---|
97 | ContainerIter iter;
|
---|
98 | SortEntry() {}
|
---|
99 | SortEntry(TCompValueType k, ContainerIter it)
|
---|
100 | : key(k), iter(it) {}
|
---|
101 |
|
---|
102 | };
|
---|
103 | /// Temp sort storage
|
---|
104 | std::vector<SortEntry> mSortArea1;
|
---|
105 | std::vector<SortEntry> mSortArea2;
|
---|
106 | std::vector<SortEntry>* mSrc;
|
---|
107 | std::vector<SortEntry>* mDest;
|
---|
108 | TContainer mTmpContainer; // initial copy
|
---|
109 |
|
---|
110 |
|
---|
111 | void sortPass(int byteIndex)
|
---|
112 | {
|
---|
113 | // Calculate offsets
|
---|
114 | // Basically this just leaves gaps for duplicate entries to fill
|
---|
115 | mOffsets[0] = 0;
|
---|
116 | for (int i = 1; i < 256; ++i)
|
---|
117 | {
|
---|
118 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1];
|
---|
119 | }
|
---|
120 |
|
---|
121 | // Sort pass
|
---|
122 | for (int i = 0; i < mSortSize; ++i)
|
---|
123 | {
|
---|
124 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key);
|
---|
125 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i];
|
---|
126 | }
|
---|
127 |
|
---|
128 | }
|
---|
129 | template <typename T>
|
---|
130 | void finalPass(int byteIndex, T val)
|
---|
131 | {
|
---|
132 | // default is to do normal pass
|
---|
133 | sortPass(byteIndex);
|
---|
134 | }
|
---|
135 |
|
---|
136 | // special case signed int
|
---|
137 | void finalPass(int byteIndex, int val)
|
---|
138 | {
|
---|
139 | int numNeg = 0;
|
---|
140 | // all negative values are in entries 128+ in most significant byte
|
---|
141 | for (int i = 128; i < 256; ++i)
|
---|
142 | {
|
---|
143 | numNeg += mCounters[byteIndex][i];
|
---|
144 | }
|
---|
145 | // Calculate offsets - positive ones start at the number of negatives
|
---|
146 | // do positive numbers
|
---|
147 | mOffsets[0] = numNeg;
|
---|
148 | for (int i = 1; i < 128; ++i)
|
---|
149 | {
|
---|
150 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1];
|
---|
151 | }
|
---|
152 | // Do negative numbers (must start at zero)
|
---|
153 | // No need to invert ordering, already correct (-1 is highest number)
|
---|
154 | mOffsets[128] = 0;
|
---|
155 | for (int i = 129; i < 256; ++i)
|
---|
156 | {
|
---|
157 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1];
|
---|
158 | }
|
---|
159 |
|
---|
160 | // Sort pass
|
---|
161 | for (int i = 0; i < mSortSize; ++i)
|
---|
162 | {
|
---|
163 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key);
|
---|
164 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i];
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | // special case float
|
---|
170 | void finalPass(int byteIndex, float val)
|
---|
171 | {
|
---|
172 | // floats need to be special cased since negative numbers will come
|
---|
173 | // after positives (high bit = sign) and will be in reverse order
|
---|
174 | // (no ones-complement of the +ve value)
|
---|
175 | int numNeg = 0;
|
---|
176 | // all negative values are in entries 128+ in most significant byte
|
---|
177 | for (int i = 128; i < 256; ++i)
|
---|
178 | {
|
---|
179 | numNeg += mCounters[byteIndex][i];
|
---|
180 | }
|
---|
181 | // Calculate offsets - positive ones start at the number of negatives
|
---|
182 | // do positive numbers normally
|
---|
183 | mOffsets[0] = numNeg;
|
---|
184 | for (int i = 1; i < 128; ++i)
|
---|
185 | {
|
---|
186 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1];
|
---|
187 | }
|
---|
188 | // Do negative numbers (must start at zero)
|
---|
189 | // Also need to invert ordering
|
---|
190 | // In order to preserve the stability of the sort (essential since
|
---|
191 | // we rely on previous bytes already being sorted) we have to count
|
---|
192 | // backwards in our offsets from
|
---|
193 | mOffsets[255] = mCounters[byteIndex][255];
|
---|
194 | for (int i = 254; i > 127; --i)
|
---|
195 | {
|
---|
196 | mOffsets[i] = mOffsets[i+1] + mCounters[byteIndex][i];
|
---|
197 | }
|
---|
198 |
|
---|
199 | // Sort pass
|
---|
200 | for (int i = 0; i < mSortSize; ++i)
|
---|
201 | {
|
---|
202 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key);
|
---|
203 | if (byteVal > 127)
|
---|
204 | {
|
---|
205 | // -ve; pre-decrement since offsets set to count
|
---|
206 | (*mDest)[--mOffsets[byteVal]] = (*mSrc)[i];
|
---|
207 | }
|
---|
208 | else
|
---|
209 | {
|
---|
210 | // +ve
|
---|
211 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i];
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | inline unsigned char getByte(int byteIndex, TCompValueType val)
|
---|
217 | {
|
---|
218 | #if OGRE_ENDIAN == OGRE_ENDIAN_LITTLE
|
---|
219 | return ((unsigned char*)(&val))[byteIndex];
|
---|
220 | #else
|
---|
221 | return ((unsigned char*)(&val))[mNumPasses - byteIndex - 1];
|
---|
222 | #endif
|
---|
223 | }
|
---|
224 |
|
---|
225 | public:
|
---|
226 |
|
---|
227 | RadixSort() {}
|
---|
228 | ~RadixSort() {}
|
---|
229 |
|
---|
230 | /** Main sort function
|
---|
231 | @param container A container of the type you declared when declaring
|
---|
232 | @param func A functor which returns the value for comparison when given
|
---|
233 | a container value
|
---|
234 | */
|
---|
235 | template <class TFunction>
|
---|
236 | void sort(TContainer& container, TFunction func)
|
---|
237 | {
|
---|
238 | if (container.empty())
|
---|
239 | return;
|
---|
240 |
|
---|
241 | // Set up the sort areas
|
---|
242 | mSortSize = static_cast<int>(container.size());
|
---|
243 | mSortArea1.resize(container.size());
|
---|
244 | mSortArea2.resize(container.size());
|
---|
245 |
|
---|
246 | // Copy data now (we need constant iterators for sorting)
|
---|
247 | mTmpContainer = container;
|
---|
248 |
|
---|
249 | mNumPasses = sizeof(TCompValueType);
|
---|
250 |
|
---|
251 | // Counter pass
|
---|
252 | // Initialise the counts
|
---|
253 | int p;
|
---|
254 | for (p = 0; p < mNumPasses; ++p)
|
---|
255 | memset(mCounters[p], 0, sizeof(int) * 256);
|
---|
256 |
|
---|
257 | // Perform alpha pass to count
|
---|
258 | ContainerIter i = mTmpContainer.begin();
|
---|
259 | TCompValueType prevValue = func.operator()(*i);
|
---|
260 | bool needsSorting = false;
|
---|
261 | for (int u = 0; i != mTmpContainer.end(); ++i, ++u)
|
---|
262 | {
|
---|
263 | // get sort value
|
---|
264 | TCompValueType val = func.operator()(*i);
|
---|
265 | // cheap check to see if needs sorting (temporal coherence)
|
---|
266 | if (!needsSorting && val < prevValue)
|
---|
267 | needsSorting = true;
|
---|
268 |
|
---|
269 | // Create a sort entry
|
---|
270 | mSortArea1[u].key = val;
|
---|
271 | mSortArea1[u].iter = i;
|
---|
272 |
|
---|
273 | // increase counters
|
---|
274 | for (p = 0; p < mNumPasses; ++p)
|
---|
275 | {
|
---|
276 | unsigned char byteVal = getByte(p, val);
|
---|
277 | mCounters[p][byteVal]++;
|
---|
278 | }
|
---|
279 |
|
---|
280 | prevValue = val;
|
---|
281 |
|
---|
282 | }
|
---|
283 |
|
---|
284 | // early exit if already sorted
|
---|
285 | if (!needsSorting)
|
---|
286 | return;
|
---|
287 |
|
---|
288 |
|
---|
289 | // Sort passes
|
---|
290 | mSrc = &mSortArea1;
|
---|
291 | mDest = &mSortArea2;
|
---|
292 |
|
---|
293 | for (p = 0; p < mNumPasses - 1; ++p)
|
---|
294 | {
|
---|
295 | sortPass(p);
|
---|
296 | // flip src/dst
|
---|
297 | std::vector<SortEntry>* tmp = mSrc;
|
---|
298 | mSrc = mDest;
|
---|
299 | mDest = tmp;
|
---|
300 | }
|
---|
301 | // Final pass may differ, make polymorphic
|
---|
302 | finalPass(p, prevValue);
|
---|
303 |
|
---|
304 | // Copy everything back
|
---|
305 | int c = 0;
|
---|
306 | for (i = container.begin();
|
---|
307 | i != container.end(); ++i, ++c)
|
---|
308 | {
|
---|
309 | *i = *((*mDest)[c].iter);
|
---|
310 | }
|
---|
311 | }
|
---|
312 |
|
---|
313 | };
|
---|
314 |
|
---|
315 |
|
---|
316 | }
|
---|
317 | #endif
|
---|
318 |
|
---|